Table of Contents
by
Amobi Ekwe, Samuel Ekeoma, Georgebest Azuoko, Ayatu Usman, Omonona Victor, Ndidiamaka Eluwa
J. Geogr. Cartogr.
2024
,
7(2);
238 Views
Abstract
An appraisal of the groundwater potential of Alex Ekwueme Federal University Ndufu Alike was carried out by integrating datasets from geology, geographic information system and electrical resistivity survey of the area. The study area is underlain by the Asu River group of Albian age. The Asu River Group in the Southern Benue Trough comprises of Shales, Limestones and Sandstone lenses of the Abakaliki Formation in Abakaliki and Ikwo areas. The shales are generally weathered, fissile, thinly laminated and highly fractured and varies between greyish brown to pinkish red in colour. Twenty (20) Vertical Electrical Sounding data were acquired using SAS 1000 ABEM Terrameter and processed to obtain layer parameters for the study area. A maximum current electrode spacing (AB) of 300 meters was used for data acquisition. Computer aided iterative modelling using IPI2 Win was used to determine layer parameters. In-situ Hydraulic Conductivity measurements at seven parametric locations within the study area were conducted and integrated with Electrical Resistivity measurements to determine aquifer parameters (e.g. Hydraulic conductivity and Transmissivity) in real time. This technique reduces the attendant huge costs associated with pumping tests and timelines required to carry out the technique. Accurate delineation of aquifer parameters and geometries will aid water resource planners and developers on favourable areas to site boreholes in the area. Several correlative cross-sections were generated from the interpreted results and used to assess the groundwater potential of the study area. Results show that the resistivity of the the aquifer ranges from 7.3 Wm–530 Wm while depth to water ranges from 11.4 m to 55.3 m. Aquifer thicknesses range from 8.7 m at VES 5 to 36.3 m at VES 6 locations. Hydraulic conductivity ranges from 1.55 m/day at VES 15.18, and 19 locations to 9.8 m/day at VES 3 and 4 locations respectively. Transmissivity varies from 17.48 m 2 /day at VES 19 to 98 m 2 /day at VES 3 locations respectively.Areas with relatively high transmissivities coupled with good aquifer thicknesses should be the target of water resource planners and developers when proposing sites for drilling productive boreholes within Alex Ekwueme federal University Ndufu Alike.
show more
by
Greg Brick
J. Geogr. Cartogr.
2024
,
7(2);
1028 Views
Abstract
The St. Peter Sandstone of the American Midwest is presented today in textbooks as a simple and unproblematic example of “layer-cake geology.” The thesis of this paper is that the very simplicity of St. Peter Sandstone has made it challenging to characterize. In widely separated states, the sandstone appeared under different names. Several theories about how it formed began to circulate. The story of the St. Peter is not only the story of the assemblage of a stratigraphic unit over a vast area during three centuries, but also the role the study of the provenance of this unit played in the development of sedimentology in the early twentieth century, research that was made all the more challenging by its “simple” mineralogy. Indeed, the St. Peter has been controversial since it was first described.
show more
by
Emmanuel Kekle Ahialey, Amos T. Kabo–bah, Samuel Gyamfi
J. Geogr. Cartogr.
2024
,
7(2);
146 Views
Abstract
Proper understanding of LULC changes is considered an indispensable element for modeling. It is also central for planning and management activities as well as understanding the earth as a system. This study examined LULC changes in the region of the proposed Pwalugu hydropower project using remote sensing (RS) and geographic information systems (GIS) techniques. Data from the United States Geological Survey's Landsat satellite, specifically the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Operational Land Imager (OLI), were used. The Landsat 5 thematic mapper (TM) sensor data was processed for the year 1990; the Landsat 7 SLC data was processed for the year 2000; and the 2020 data was collected from Operation Land Image (OLI). Landsat images were extracted based on the years 1990, 2000, and 2020, which were used to develop three land cover maps. The region of the proposed Pwalugu hydropower project was divided into the following five primary LULC classes: settlements and barren lands; croplands; water bodies; grassland; and other areas. Within the three periods (1990–2000, 2000–2020, and 1990–2020), grassland has increased from 9%, 20%, and 40%, respectively. On the other hand, the change in the remaining four (4) classes varied. The findings suggest that population growth, changes in climate, and deforestation during this thirty-year period have been responsible for the variations in the LULC classes. The variations in the LULC changes could have a significant influence on the hydrological processes in the form of evapotranspiration, interception, and infiltration. This study will therefore assist in establishing patterns and will enable Ghana's resource managers to forecast realistic change scenarios that would be helpful for the management of the proposed Pwalugu hydropower project.
show more
by
Miljenko Lapaine
J. Geogr. Cartogr.
2024
,
7(2);
124 Views
Abstract
The article discusses the interrelationships of the loxodrome or rhumb line, isometric latitude, and the Mercator projection of the rotational ellipsoid. It is shown that by applying the isometric latitude, a very simple equation of the rhumb line on the ellipsoid is obtained. The consequence of this is that the isometric latitude can be defined using the generalized geodetic longitude and not only using the geodetic latitude, as was usual until now. Since the image of the rhumb line in the plane of the Mercator projection is a straight line, the isometric latitude can also be defined using this projection. Finally, a new definition of the normal aspect of the Mercator projection of the ellipsoid is given. It is a normal aspect cylindrical projection in which the images of the rhumb line on the ellipsoid are straight lines in the plane of projection that, together with the images of the meridians in the projection, form equal angles as the rhumb line forms with the meridians on the ellipsoid. The article provides essential knowledge to all those who are interested in the use of maps in navigation. It will be useful for teachers and students studying cartography and GIS, maritime, or applied mathematics. The author uses mathematical methods, especially differential geometry. The assumption is that the readers are no strangers to mathematical cartography.
show more
by
Jules Hermann Keyangue Tchouata, Willy Chance Guimezap Kenou, Darman Japhet Taypondou, Moses Mbuh Kuma, Joseph Stephane Edzoa Akoa, François Ngapgue
J. Geogr. Cartogr.
2024
,
7(2);
95 Views
Abstract
Despite Cameroon’s immense sand reserves, several enterprises continue to import standardized sands to investigate the properties of concretes and mortars and to guarantee the durability of built structures. The present work not only falls within the scope of import substitution but also aims to characterize and improve the properties of local sand (Sanaga) and compare them with those of imported standardized sand widely used in laboratories. Sanaga sand was treated with HCl and then characterized in the laboratory. The constituent minerals of Sanaga sand are quartz, albite, biotite, and kaolinite. The silica content (SiO 2 ) of this untreated sand is 93.48 wt.%. After treatment, it rose 97.5 wt.% for 0.5 M and 97.3 wt.% for 1 M HCl concentration. The sand is clean (ES, 97.67%–98.87%), with fineness moduli of 2.45, 2.48, and 2.63 for untreated sand and sand treated with HCl concentrations of 0.5 and 1 M respectively. The mechanical strengths (39.59–42.4 MPa) obtained on mortars made with untreated Sanaga sand are unsatisfactory compared with those obtained on mortars made with standardized sand and with the expected strengths. The HCl treatment used in this study significantly improved these strengths (41.12–52.36 MPa), resulting in strength deficiencies of less than 10% after 28 curing days compared with expected values. Thus, the treatment of Sanaga sand with a 0.5 M HCl concentration offers better results for use as standardized sand.
show more
by
Tatyana Romanova, Aliaksandr Chervan, Nadezhda Ivakhnenko
J. Geogr. Cartogr.
2024
,
7(2);
6 Views
Abstract
The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
show more
by
Mourad Betrouni
J. Geogr. Cartogr.
2024
,
7(2);
10 Views
Abstract
The status of National park was adopted in Algeria in 1921, during French colonisation, within the framework of the forestry law in force. It was renewed as is, after 1962 by independent Algeria and placed under the supervision of the Ministry of Agriculture, in its general forestry directorate. In 1983, it was redefined in the first national law on the environment, then, from 2011, in that of protected areas, within the framework of sustainable development. All Algerian national parks are created under the forestry regime and agricultural administration, with the exception of a single case where they are attached to the cultural sector: that of Tassili and Ahaggar, both located in the extreme south of the Sahara, including the Tuareg customary domain of Kel Ajjer and Kel Ahaggar. A particular case, linked to the process of administrative construction of the Saharan space. It is following the adoption of paradigm of sustainable development and a new law on the protection of cultural heritage , that this particularism has disappeared, with the introduction of a new legal category of protection, called “parc culturel”, based on the principle of “indissociability” between culture and nature, an innovative notion which has not yet acquired the conceptual force necessary to achieve the required stabilization and social appropriation, hence the difficulty of its translation into operational tools.
show more
by
Raiyan Siddique, M. R. Ashikur, Taspiya Hamid, Mohammad Azharul Islam
J. Geogr. Cartogr.
2024
,
7(2);
52 Views
Abstract
The persistence of coastal ecosystems is jeopardized by deforestation, conversion, and climate change, despite their capacity to store more carbon than terrestrial vegetation. The study’s objectives were to investigate how spatiotemporal changes impacted blue carbon storage and sequestration in the Satkhira coastal region of Bangladesh over the past three decades and, additionally to assess the monetary consequences of changing blue carbon sequestration. For analyzing the landscape change (LSC) patterns of the last three decades, considering 1992, 2007, and 2022, the LSC transformations were evaluated in the research area. Landsat 5 of 1992 and 2007, and Landsat 8 OLI-TIRS multitemporal satellite images of 2022 were acquired and the Geographical Information System (GIS), Remote Sensing (RS) techniques were applied for spatiotemporal analysis, interpreting and mapping the output. The spatiotemporal dynamics of carbon storage and sequestration of 1992, 2007, and 2022 were evaluated by the InVEST carbon model based on the present research years. The significant finding demonstrated that anthropogenic activity diminished vegetation cover, vegetation land decreased by 7.73% over the last three decades, and agriculture land converted to mariculture. 21.74% of mariculture land increased over the last 30 years, and agriculture land decreased by 12.71%. From 1992 to 2022, this constant LSC transformation significantly changed carbon storage, which went from 11706.12 Mega gram (Mg) to 9168.03 Mg. In the past 30 years, 2538.09 Mg of carbon has been emitted into the atmosphere, with a combined market worth of almost 0.86 million USD. The findings may guide policymakers in establishing a coastal management strategy that will be beneficial for carbon storage and sequestration to balance socioeconomic growth and preserve numerous environmental services.
show more
by
Mohamed H. Fathy, Farha Shaban, Thowayba M. Fawzy, Dat Viet Nguyen, Ahmed M. Eldosouky
J. Geogr. Cartogr.
2024
,
7(2);
444 Views
Abstract
Naturally occurring radionuclides can be categorized into two main groups: primordial and cosmogenic, based on their origin. Primordial radionuclides stem from the Earth’s crust, occurring either individually or as part of decay chains. Conversely, cosmogenic radionuclides originate from extraterrestrial sources such as space, the sun, and nuclear reactions involving cosmic radiation and the Earth’s atmosphere. Gamma-ray spectrometry is a widely employed method in Earth sciences for detecting naturally occurring radioactive materials (NORM). Its applications vary from environmental radiation monitoring to mining exploration, with a predominant focus on quantifying the content of uranium (U), thorium (Th), and potassium (K) in rocks and soils. These elements also serve as tracers in non-radioactive processes linked to NORM paragenesis. Furthermore, the heat generated by radioactive decay within rocks plays a pivotal role in deciphering the Earth’s thermal history and interpreting data concerning continental heat flux in geophysical investigations. This paper provides a concise overview of current analytical and measuring techniques, with an emphasis on state-of-the-art mass spectrometric procedures and decay measurements. Earth scientists constantly seek information on the chemical composition of rocks, sediments, minerals, and fluids to comprehend the vast array of geological and geochemical processes. The historical precedence of geochemists in pioneering novel analytical techniques, often preceding their commercial availability, underscores the significance of such advancements. Geochemical analysis has long relied on atomic spectrometric techniques, such as X-ray fluorescence spectrometry (XRFS), renowned for its precision in analyzing solid materials, particularly major and trace elements in geological samples. XRFS proves invaluable in determining the major constituents of silicate and other rock types. This review elucidates the historical development and methodology of these techniques while showcasing their common applications in various geoscience research endeavors. Ultimately, this review aims to furnish readers with a comprehensive understanding of the fundamental concepts and potential applications of XRF, HPGes, and related technologies in geosciences. Lastly, future research directions and challenges confronting these technologies are briefly discussed.
show more