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Abstract: The persistence of coastal ecosystems is jeopardized by deforestation, conversion, 

and climate change, despite their capacity to store more carbon than terrestrial vegetation. The 

study’s objectives were to investigate how spatiotemporal changes impacted blue carbon 

storage and sequestration in the Satkhira coastal region of Bangladesh over the past three 

decades and, additionally to assess the monetary consequences of changing blue carbon 

sequestration. For analyzing the landscape change (LSC) patterns of the last three decades, 

considering 1992, 2007, and 2022, the LSC transformations were evaluated in the research area. 

Landsat 5 of 1992 and 2007, and Landsat 8 OLI-TIRS multitemporal satellite images of 2022 

were acquired and the Geographical Information System (GIS), Remote Sensing (RS) 

techniques were applied for spatiotemporal analysis, interpreting and mapping the output. The 

spatiotemporal dynamics of carbon storage and sequestration of 1992, 2007, and 2022 were 

evaluated by the InVEST carbon model based on the present research years. The significant 

finding demonstrated that anthropogenic activity diminished vegetation cover, vegetation land 

decreased by 7.73% over the last three decades, and agriculture land converted to mariculture. 

21.74% of mariculture land increased over the last 30 years, and agriculture land decreased by 

12.71%. From 1992 to 2022, this constant LSC transformation significantly changed carbon 

storage, which went from 11706.12 Mega gram (Mg) to 9168.03 Mg. In the past 30 years, 

2538.09 Mg of carbon has been emitted into the atmosphere, with a combined market worth of 

almost 0.86 million USD. The findings may guide policymakers in establishing a coastal 

management strategy that will be beneficial for carbon storage and sequestration to balance 

socioeconomic growth and preserve numerous environmental services. 

Keywords: remote sensing; geographical information system; InVEST carbon model; blue 

carbon storage and sequestration; environmental economics 

1. Introduction 

Carbon is sequestered by coastal ecosystems such as mangroves and seagrass 

meadows at rates that are substantially greater per unit area in comparison to terrestrial 

vegetation [1]. Coastal habitats have been identified as having some of the most 

concentrated quantities of carbon on the planet [2]. Several studies reveal that 

mangrove ecosystems typically absorb an average of 6 to 8 Mega gram (Mg) of Carbon 

dioxide (CO2) per hectare of carbon annually (tons of CO2 equivalent per hectare) [3]. 

The carbon sequestration process of an ecosystem absorbs and retains more carbon in 

biomass, sediments, or water than is released into the atmosphere [4]. Recent research 

into the function of blue carbon throughout the global carbon cycle indicates that 

coastal habitats not only encompass enormous above-ground biomass on tropical 

shorelines but also possess considerably more below-ground carbon storage [5]. Blue 
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carbon, in contrast to green carbon that exists in terrestrial vegetation, endures in ocean 

sediments for thousands of years [6]. 

Blue carbon sequestration (BCS) employs the carbon-sequestration competencies 

of marine creatures and coastal ecosystems to establish carbon sinks. The extraction 

and processing of blue carbon (BC) could evolve into a financially sustainable 

industrial endeavor, stipulating the fact that an internationally recognized trading 

market has been established and a feasible measurement and valuing system for carbon 

sink services has been placed in established [7]. The efforts intended for restoring and 

protecting BC also offer the potential to develop market-driven mechanisms that 

exploit existing frameworks for carbon offsets (also called carbon credits). The 

commercial viability of BC extraction and processing would be attained through the 

establishment of a global trading market and the implementation of a proper 

measurement and pricing mechanism for carbon sink commodities [8]. 

Coastal habitats are widely regarded as some of the most ecologically and 

economically crucial regions on Earth [6]. Coastal environments offer a diverse range 

of amenities and goods [9]. The natural processes and components of ecosystems that 

contribute to human demands for commodities and amenities are known as ecosystem 

services [10]. Coastal habitats offer vital ecosystem services due to their variety of 

ecosystems and organisms that serve a crucial role in preserving the carbon cycle’s 

equilibrium [11]. Bangladesh’s coastal and marine ecosystems are integral to the Bay 

of Bengal (BoB) large marine ecosystems (LMEs), one of 64 LMEs worldwide. A 

substantial proportion of people living in Bangladesh’s coastal region and elsewhere 

depend on ecosystem services from the coastal and marine ecosystem for their 

livelihoods and income. The same argument applies to several coastal communities 

across the globe as well [12]. The Blue Economy (BE) entails a range of commercial 

activities, goods, services, and investments that hinge on and have an impact on coastal 

and marine resources [13]. The two primary anthropogenic stresses that coastal 

ecosystems face worldwide are urbanization and industrialization and these two 

factors influence the intensity of landscape change (LSC) and have altered the coastal 

land cover in recent decades [14]. The structure and zonation of the coastal 

environment have been greatly disturbed by coastal disturbances and changes in LSC 

[15]. When attempting to comprehend and simulate the transformation in the coastal 

regions of the planet, LSC modification is considered to be one of the most vital 

processes. Complex interconnections between human and environmental driving 

variables are what cause it [16]. BC habitats are threatened by anthropogenic activities 

such as land conversion for agricultural production and urban growth [17]. The FAO’s 

worldwide forest resources evaluation for 2020 revealed that 113 nations and 

territories possess mangrove forest lands. From 1990 to 2020, there was a global 

decline of 1.04 million hectares in the mangrove area [18]. 

There are a multitude of conventional methods for quantifying stored carbon. The 

estimation and assessment of spatially explicit services for carbon sequestration 

potential might vary depending on factors such as meteorological conditions, 

management applications, ecosystem characteristics, species composition, and local 

populations. When applied to individual foundational issues, the combination of 

geographic information systems (GIS) and remote sensing (RS) will produce the most 

reliable results [19]. A method for tracking the spatiotemporal distribution and 
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condition of coastal ecosystems is RS [20]. Utilizing four carbon pools, the concept of 

the InVEST Carbon model is used to estimate the current carbon stocks and their 

potential future growth (aboveground biomass, underground biomass, dead organic 

matter, and soil carbon) [16]. The InVEST blue carbon model evaluates the fluctuating 

value of carbon storage and sequestration services provided by coastal ecosystems. It 

performs this by analyzing the variations in carbon storage over a specific timeframe 

and contrasting them with various management scenarios. 

Ma et al. 2019 have investigated the storage of coastal blue carbon in the Yellow 

River Delta and its relationship to changes in land cover over the previous four decades 

in their study article [21]. Aljenaid et al. 2022 have combined GIS and RS data for 

evaluating the spatiotemporal changes of mangroves in Bahrain over the last 50 years 

and their relationship with carbon stocks and potential emissions [6]. 

Climate change is characterized by rising sea levels, increased salinity, and a 

higher frequency of cyclones making the Satkhira region vulnerable. These 

environmental stresses and anthropogenic activity put at risk local ecosystems, 

including the mangrove forests of the Sundarbans, while diminishing the carbon 

sequestration capacity of these essential blue carbon ecosystems. Despite these 

challenges, the Satkhira region presents considerable opportunities for blue carbon 

sequestration. The Sundarbans, recognized as the largest mangrove forest globally, 

provide significant carbon storage potential. Regional conservation and restoration 

efforts, supported by government and international organizations, can improve blue 

carbon sequestration. The increasing global interest in carbon credits offers an 

economic motivation for the preservation of these ecosystems. Carbon offset programs 

could fund Satkhira conservation while mitigating climate change and protecting 

biodiversity. 

This study contributes to existing research on blue carbon by examining the 

environmental economics of BCS rates in the Satkhira coastal area of Bangladesh and 

specifically reviews earlier studies that mostly focused on data collection and the 

mapping of blue carbon ecosystems in different nations. In this study, the LSC 

intensity over the past three decades in the study area using the GIS and RS techniques 

to better understand the issue. This study’s main objectives are to investigate how 

spatiotemporal changes impact blue carbon storage and sequestration in the research 

area over the last three decades and evaluate shifting BCS from an economic angle. 

2. Materials and methods 

2.1. Study area 

Satkhira, located in the Southwestern region of Bangladesh, is a constituent of 

the Khulna division. The Satkhira district has boundaries set by the Jashore district to 

the North, the Khulna district to the East, the BoB to the South, and India to the West. 

It is located between latitudes 21°36’ North and 22°54′ North and longitude 88°54′ 

East and 89°20′ East (Figure 1). The district has 1440 villages, 2 paurashavas, 7 

upazilas, 79 unions, 953 mauzas, 18 wards, and 42 mahallas. Satkhira Sadar, Assasuni, 

Debhata, Kalaroa, Kaliganj, Shyamnagar, and Tala are the upazilas of the Satkhira 

district [22]. According to the Bangladesh Meteorological Department (BMD) in 2022, 

Satkhira’s yearly average temperature is 77.0° F (25 ℃). May is considered the highest 
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average temperature, at 86.0° F (30 ℃). January has the lowest average temperature, 

at 66.0° F (18.9 ℃). In Satkhira, there are 66.5 inches (1689.1 mm) of precipitation 

on average each year. With 13.9 inches (353.1 mm) of precipitation on average and 

July is the month with the most precipitation. January has an average of 0.3 inches 

(7.6 mm) of precipitation, making it the month with the least amount [23]. The 

important rivers in this region include the Kobadak, Sonai, Kholpatua, Morischap, 

Raimangal, Hariabhanga, Ichamati, Betrabati, etc. [24]. 

 

Figure 1. Map shows the location of the study area, index map shows Bangladesh and Khulna division. 

2.2. Overview of data and pre-processing 

Landsat 4–5 Thematic Mapper (TM) level one image for 1992, 2007 and Landsat 

8 OLI/TIRS images for 2022 were acquired from the United States Geological Survey 

(USGS) for the detection of LSC alteration of the area of interest (AOI). Nine satellite 

images from the same month of March with a 15-year interval were collected from the 

USGS. The characteristics and information of the research data are given in Table 1. 

Table 1. Description of the data used for this study. 

Year Date of Acquisition (yr-mm-dd) Sensor Path Row Resolution Cloud Cover 

1992 1992-03-08 TM 138 
44

45
 30 m <10% 

2007 2007-03-08 TM 138 
44

45
 30 m <10% 

2022 2022-03-03 OLI_TIRS 138 
44

45
 30 m <10% 

The susceptibility of Landsat sensor-captured images to distortion was influenced 

by elements such as sensors, solar conditions, atmospheric conditions, and topography. 
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Preprocessing made a concerted attempt to minimize these effects to the greatest 

extent possible for a specific application [25]. The satellite images were selected based 

on several criteria (1) The satellite images must have cloud coverage of less than 10% 

over the whole research region, or ideally, be completely free of clouds. (2) It is 

essential to provide access to a continuous sequence of Landsat images over a 

significant period to optimize the distinction and categorization of diverse land 

utilization patterns [26]. According to Koppen’s climate zone, the Satkhira coastal area 

was situated in a tropical climate zone [27]. Obtaining completely free cloud data 

is indicated to be quite challenging. Nevertheless, the data collected for this study only 

had minimal cloud coverage, amounting to less than 10%. The haze and clouds in 

satellite images were effectively eliminated using Erdas Imagine software v14. 

Due to the absence of homogeneity in the time series of Satellite images, it was 

necessary to evaluate abrupt changes in the LSC while utilizing multi-temporal 

satellite images. The noise from surface signals, as well as the absorption and 

scattering of atmospheric gases and aerosol particles as they passed through the earth’s 

atmosphere and back to the sensor, had an impact on this homogeneity. The satellite 

images may be accurately interpreted due to atmospheric influences. The atmospheric 

impact should be removed from the satellite images during pre-processing in order to 

evaluate change detection [28]. 

The essential process for transforming image data from many sensors and 

platforms into a physically significant common radiometric scale was the calculation 

of at-sensor spectral radiance. Using 32-bit floating-point calculations, pixel values 

(Q) from unprocessed, raw data were changed into absolute spectral radiance units 

during radiometric calibration. The Equation (1) was carried out to perform the Qcal-

to-Lλ conversion for Level 1 products [26, 28–30]. 

𝐿𝜆 = (
𝐿𝑀𝐴𝑋𝜆 − 𝐿𝑀𝐼𝑁𝜆

𝑄𝑐𝑎𝑙𝑚𝑎𝑥 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛
)(𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑀𝐼𝑁𝜆 (1) 

where; 

Lλ = Spectral radiance at the sensor’s aperture [W/ (m2 sr μm)] 

Qcal = Quantized calibrated pixel value [DN] 

Qcalmin = Minimum quantized calibrated pixel value corresponding to LMINλ 

[DN] 

Qcalmax = Maximum quantized calibrated pixel value corresponding to LMAXλ 

[DN] 

LMINλ = Spectral at-sensor radiance that is scaled to Qcalmin [W/(m2 sr μm)] 

LMAXλ = Spectral at-sensor radiance that is scaled to Qcalmax [W/(m2 sr μm)] 

By converting the at-sensor spectral radiation to exo-atmospheric TOA 

reflectance, sometimes referred to as in-band planetary albedo, was achieved scene-

to-scene variability. There were three benefits to employing TOA reflectance instead 

of at-sensor spectral radiance when comparing images from various sensors. The 

cosine impact of varied solar zenith angles caused by the delay in data collecting is 

first eliminated. The second was that TOA reflectance made up for variations in exo-

atmospheric solar irradiance caused by spectral band discrepancies. Third, the 

fluctuation in the earth-sun distance between several data-gathering dates was adjusted 

for using the TOA reflectance. These changes had a big impact on time and space, too. 
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The acquired value of radiance was converted to top of the atmosphere (TOA) 

reflectance, which was how the earth’s TOA reflectance was calculated from Equation 

(2) [31]. 

𝜌 =
π𝐿𝜆𝑑2

𝐸𝑆𝑈𝑁𝜆. cosθ𝑠
 (2) 

where; 

ρ = Planetary TOA reflectance for δ [unitless] 

π = Mathematical constant equal to~3.14159 [unitless] 

Lλ = Spectral radiance at the sensor’s aperture [W/(m2 sr μm)] 

d = Earth–Sun distance [astronomical units] 

ESUNλ = Mean exo-atmospheric solar irradiance [W/(m2 μm)] 

θs = Solar zenith angle [degrees] 

ArcGIS software v10.5 was used to process radiometric calibration, radiometric 

correction, image cropping, and mapping. 

2.3. LSC classification 

Multiband raster images with LSC data extracted by classification and image 

analysis. Autonomously grouping pixels with comparable reflectance ranges into a 

specific LSC class was the objective of both supervised and unsupervised image 

classification. Supervised classification, a method directed by the user, entails the 

selection of training sites to serve as references for categorization. Supervised 

classification was implemented using a variety of methods, including parallelepiped 

classification, K-nearest neighbor, minimal distance classification, and others [32]. 

The commonly used maximum likelihood classification method was applied to 

the LSC classification in this study using ArcGIS software. The spectral response 

patterns’ variance and covariance were quantitatively evaluated by the maximum 

likelihood algorithm, and each pixel was then assigned to the class with the greatest 

likelihood of association [32]. 

Six LSC categories were selected in total: water body, tide flat, mariculture, built-

up area, vegetation, and cultivated land (Table 2). For each of the LSC classes, about 

50 training samples were gathered for maximum likelihood classification. To estimate 

the LSC change, multitemporal raster layers were created, and their corresponding 

data were compared. 

Table 2. The classification method for LSC employed in this study. 

LSC categories Description 

Built-up Area 
Residential; commercial and services; 
transportation infrastructure; industrial; mixed 
urban and other urban 

Cultivated Land 
Agriculture land; paddy field; vegetables; fruits; 
and other cultivated lands 

Water Body River; canal; pond; Permanent open water; lakes 

Mari culture Shrimp aquaculture; Gher 

Vegetation 
Mangrove vegetation; homestead vegetation; 
urban vegetation 

Tidal flat Deposit mud or sand; coastal wetlands 
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2.4. Accuracy assessment 

Three distinct accuracy assessments were conducted to evaluate the quality of the 

generated LSC map. The error matrix technique was used for the initial approach. The 

integration of reference data and independent categorization allowed for a clear 

comprehension of the situation in the field [33]. Accuracy identified the degree to 

which the created map agreed with the reference categorization. The correctness of a 

study was frequently assessed using the Kappa coefficient of agreement. Kappa was 

said to include a correction for “random allocation agreement”. By using Equation (3) 

the Kappa coefficient was calculated [32,34]. 

Kappa coefficient (K) =
𝑛 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 − ∑ 𝑥𝑖 + 𝑥 + 𝑖𝑟

𝑖=1

𝑛2 − ∑ 𝑥𝑖
𝑟
𝑖=1 + 𝑥 + 𝑖

 (3) 

Here; 

xii is the number of observations in row i and column i; 

xi + and x + i are marginal totals for row i and column i respectively; 

n is the total number of observations (pixels) 

Through the creation of an error matrix; the accuracy of each raster layer was 

evaluated in the current study. Stratified random sampling was used for the accuracy 

evaluation. Overall accuracy was calculated by using the Equation (4) [32,34]. 

Overall accuracy =
∑ 𝑥𝑖𝑖

𝑟
𝑖=1

𝑥
 (4) 

where xii is the diagonal elements in the error matrix; 

x is the total number of samples in the error matrix; and r is the number of rows 

in the matrix. 

2.5. Blue carbon storages and sequestration utilizing the InVEST carbon 

model 

The quantity of static carbon storage and dynamic sequestration for each cell in 

the research area was calculated using the InVEST 3.10.2 carbon model. The four 

carbon pools were examined in this module: soil organic carbon, belowground carbon 

density, aboveground carbon density, and dead organic matter. The calculation of the 

carbon storage Cm;I;j in a given grid cell (i; j) with land use type “m” achieved by 

Equation (5) [35]. 

Cm;I;j = A × (Cam;I;j + Cbm;I;j + Csm;I;j + Cdm;I;j) (5) 

In this formula, A is the real area of each grid cell (ha). 

Cam;I;j; Cbm;I;j; Csm;I;j Cdm;I;j are the aboveground carbon density, belowground 

carbon density, soil organic carbon density, and dead organic matter carbon density (i; 

j), respectively. 

Finally, carbon storage “C” and carbon sequestration “S” were calculated by 

Equations (6) and (7) for the whole case study region [35]. 

𝐶 = ∑ 𝑐𝑚;𝑖;𝑗

𝑛

𝑚=1

 (6) 
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S = CT2 − CT1 (7) 

In Equation (7), CT2 and CT1 demonstrate static carbon storage in years T2 and 

T1 (here T2 > T1). The needed data for running the carbon storage model was the LSC 

map and the biophysical table containing columns of LSC, ‘C_above’ ‘C_below’ 

‘C_soil,’ and ‘C_dead’ (Table 3). 

Table 3. Types of LSC and the elements that make up their carbon pools [21,35,36]. 

LSC Type C_above (Mg/hm2) C_below (Mg/hm2) C_soil (Mg/hm2) C_dead (Mg/hm2) 

Vegetation 14 7 15 1 

Water Body 2 1 10 0 

Tidal Flat 6 2 16 1 

Mari culture 1 0 12 0 

Built-up Area 0 0 8 0 

Agriculture Land 4 9 25 1 

C_above = Above ground carbon biomass; C_below = Below ground carbon biomass; C_soil = Soil 
carbon biomass; C_dead = Dead carbon biomass. 

The InVEST model, although commonly employed for ecosystem service 

valuation. The model relies significantly on the quality of input data, which 

encompasses LSC maps, vegetation characteristics, and various biophysical 

parameters. Inaccuracies in these inputs can propagate through the model, resulting in 

potential errors in estimating ecosystem services, such as carbon storage. 

2.6. Economic evaluation of blue carbon sequestration 

The final step assessed the economic value of BCS in the Satkhira shoreline 

region. Over 30 years, the LSC in the research region changed, resulting in a 

modification of the storage of blue carbon. The rate of carbon sequestration was also 

altered due to the shift in storage. Unfortunately, the Satkhira region did not have any 

long-term information on the societal costs of land-use change, particularly the 

removal of mangrove forests and other vegetation. The monetary value of blue carbon 

across the Satkhira region was calculated based on estimates of the social cost of 

carbon and the current price of carbon credits. Hence, the economic data about the cost 

of carbon per mega gram was derived from several sources, including research studies 

and international organizations, to analyze and assess the economic significance of 

carbon. The price of carbon at the moment around $50 per Mg [37]. In this study, the 

carbon cost was set at $50 per Mg. 

3. Results and discussion 

3.1. Spatial and temporal transformation of LSC 

The RS technology illustrated the LSC dynamics of the Satkhira shoreline area 

from 1992 to 2022. The spatial and temporal distribution of LSC patterns considered 

six classes and these were tidal flat, vegetation, water body, mariculture, agriculture 

land, and built-up area as shown in Figure 2. The percentage of different LSC classes 

and their percentage of cover change in the years 1992, 2007, and 2022 are presented 
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in Table 4. The tidal flat regions have consistently dropped over the years, with a 

decline from 9.34% in 1992, to 8.2% in 2007, and further down to 6.07% in 2022. 

Conversely, the vegetation in the study region rose from 33.11% in 1992 to 41.1% in 

2007 but declined to 25.39% in 2022. On the other hand, agricultural land areas 

experienced a significant decrease from 20.92% in 1992 to 4.93% in 2007, followed 

by a rise in 2022 to 8.21%. Also, build-up areas reduced from 22.29% in 1992 to 17.2% 

in 2007, followed by a rise in 2022 to 23.65%. Mari culture areas continued their 

increasing trend from 1992, 2007, and 2022 where it increased from 6.25% to 27.99% 

respectively. Eventually, there was an absence of discernible alterations in the aquatic 

systems within the designated research region. The aquatic ecosystem had a 0.61% 

increase in size during the previous 30 years. 

Table 4. Percentile of the LSC categories and percentile change between the study years 1992; 2007; and 2022. 

 Percentile (%) Percentile change 

Class Name 1992 2007 2022 2007–1992 2022–2007 2022–1992 

Tidal Flat 9.34 8.20 6.07 −1.14 −2.13 −3.27 

Vegetation 33.11 41.10 25.39 7.98 −15.71 −7.73 

Water Body 8.08 8.04 8.69 −0.03 0.65 0.61 

Mari culture 6.25 20.52 27.99 14.27 7.47 21.74 

Agriculture Land 20.92 4.93 8.21 −15.98 3.28 −12.71 

Built-up Area 22.29 17.20 23.65 −5.09 6.45 1.36 

 

Figure 2. Land cover changes over time in 1992, 2007, and 2022. 

Over the past three decades, tidal flats deteriorated by around 4%, with uneven 

patterns in vegetation cover. The vegetation rose in 2007 as a result of various 
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afforestation efforts, but by 2022 the rapid growth of urbanization, unplanned 

development, and various socioeconomic activities reduced the vegetation land cover 

by approximately 8%. The class demonstrated a linear relationship between the years, 

water bodies did not alter significantly. One of the top nations in the world for shrimp 

production is Bangladesh. The majority of the coastal population makes a living by 

raising shrimp. As a result, the area used for mariculture rapidly increased. The 

research area forecasted a growth of over 22% in this class during the past thirty years. 

Since the majority of agricultural land was converted to mariculture, the rapid 

expansion of mariculture land led to the degradation of agricultural land. During the 

research period, agricultural land declined by about 13%. Additionally, the built-up 

area grew by about 2%. The main factors related to the increasing development of land 

use at the expense of deteriorating the vegetation covers can be attributed to urban 

expansion. 

3.2. The estimation of blue carbon storages and sequestration 

3.2.1. The changes in carbon pool value 

In the research area, significant land cover altered over the past 30 years resulted 

in a substantial change in CO2 levels. Four carbon pools were affected by the LSC 

transition. The spatiotemporal changes of carbon pool value are presented in Figure 

3. Table 5 displays the summary of the changes in carbon pool value due to the 

alteration of LSC in Satkhira between 1992 and 2022. Overall, the carbon pool value 

changed significantly within the period where carbon below value (BBC), carbon dead 

value (DOM), and carbon soil value (SOC) reduced in considerable amount with 

noticeable fluctuation in carbon above value (ABG). ABG showed rising from 1992 

to 2007 with a considerable decline in 2022. Over the past 30 years, DOM did not shift 

that much in the Satkhira coastline region with little change in the CO2 value. DOM 

ranged between 1992 and 2022 from 322.92 Mg to 201.87 Mg. 

  
(a) (b) 
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(c) (d) 

Figure 3. Spatiotemporal changes of carbon pool value. (a) ABG, (b) BBC, (c) DOM, (d) SOC. 

Table 5. The threshold for the amount of carbon ABG, BBC, DOM, SOC value 

(Mg) in the soil changed during the study. 

CATEGORY 1992 2007 2022 

(A) ABG 2787.84 3493.8 2101.05 

(B) BBC 2289.06 1388.52 1391.04 

(C) DOM 322.92 277.92 201.87 

(D) SOC 7619.58 6780.51 6573.78 

3.2.2. Calculation of blue carbon storages and sequestration 

The spatial distribution of carbon storage variation in the study area is depicted 

in Figure 4. The Satkhira coastline region stored 11706.12 Mg of carbon in total in 

1992. The value of the carbon stored was downgraded in 2007, the value of carbon 

stored in 2007 was 10779.84 Mg. The most concerning outcome was in 2022 when 

Satkhira’s carbon stored capacity was downgraded to the largest amount of 9168 Mg. 

The highest carbon storage capacity was found in mangrove vegetation and carbon 

storage was minimal in the built-up area. The vegetation contributed the largest 

amount C for the total value of the ecosystem. Also, it revealed low carbon in water 

bodies. Thus, the study suggested conserving the mangrove vegetation for sustaining 

carbon storage. 

The second output of this model was the calculation of CS. The values of CS 

came to negative ranges. The negative values indicated lost carbon; indicated 

sequestered carbon in Mg per pixel. Figure 5 depicts the comparison of carbon storage 

and sequestration in the research area throughout the study period. As carbon storage 

facilities degraded over the last three decades. CS rates also declined. CS differences 

between the years were obtained from Table 6. It showed that in 2007–1992; CS rates 

were higher than the difference between 2022–2007 and 2022–1992. Table 6 shows 

CS changing with 15-year intervals. Between 2007–1992 CS was found −926.28 Mg. 

CS rates were found to continuously degrade next 15 years interval which was from 

2022 to 2007 –1611.81 Mg carbon was emitted into the atmosphere between this time 

frame. Overall last 30 years interval from 1992–2022. CS degradation intensity rose 
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at an alarming rate. In this study; it was estimated that CS degraded almost −2538.09 

Mg; nearly a 27.68% reduction compared with the previous research year. 

 

Figure 4. Changes in total carbon storage from 1992, 2007, and 2022, respectively, in the study area. 

Table 6. Comparison of carbon sequestration in the different study years. 

Category 2007–1992 2022–2007 2022–1992 

(a) Carbon sequestration (Mg) −926.28 −1611.81 −2538.09 

(b) Carbon sequestration changes in (%) −8.59% −17.58% −27.68% 

 

Figure 5. Changes in carbon storage and sequestration comparison chart. 
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3.3. Economic evaluation of reducing BCS 

The outcome of the carbon model was the allocation of economic value for 

carbon sequestration over several years. The findings of this study indicated that the 

coastal environment has degraded over the last three decades. The coastal environment 

deteriorated due to a combination of natural and human activities. As a result, the level 

of BCS experienced a major decline, while there was a considerable increase in carbon 

emissions. The blue carbon storage and sequestration calculation section showed that 

the landscape of the Satkhira district changed very rapidly, approximately 2538.09 Mg 

of carbon was degraded over the last 30 years, indicating that carbon was not stored 

but emitted into the atmosphere in the research area. According to Table 7, a large 

amount of carbon was cast into the atmosphere every decade, with a market value of 

around 0.86 million USD per Mg. During 2007–1992, the carbon emitted into the 

atmosphere was 926.28 Mg, with a market value of about 0.046 million USD. During 

2022–2007, the carbon emitted into the atmosphere was 1611.81 Mg, of which carbon 

credit was around 0.86 million USD. Due to its low carbon emissions compared to 

other wealthy countries, which had high carbon emission levels, Bangladesh could 

continue to profit from carbon trading. The coastal carbon ecosystem was found 

considerable changes, per the study, changed over the past three decades. The carbon 

sequestration rate significantly decreased, and a considerable amount of carbon was 

released into the atmosphere. 

Table 7. Economic validation of carbon sequestration during the study year (unit is in million USD). 

Category 2007−1992 Carbon Credit 2022−2007 Carbon Credit 2022−1992 Carbon Credit 

Carbon Sequestration (Mg) −926.28 0.046 1611.81 0.80 2538.09 0.86 

3.4. Cumulative transformation between LSC and blue carbon dynamics 

Integrating land use scenarios and the InVEST model could make it easier to 

assess the spatial and temporal effects of LSC on carbon storage and sequestration at 

the landscape scale This study explored the effects and causes of linkage in blue carbon 

dynamics concerning LSC transformation. From Table 3, it was noticed that each LSC 

class had a different carbon content value. Vegetation had the highest ABG carbon 

value. As a result, the most abundant ABG stock was found in vegetation areas. 

According to Table 4, vegetation rates increased in 2007. ABG was found to be high 

in 2007 in comparison with 1992, and 2022 (Table 5). So, this changing LSC class 

area ultimately affected the carbon value. This shifting of LSC caused the alteration 

of carbon pool value, and these changing pool values affected the carbon storage and 

sequestration in the research area. Table 5 shows that SOC changed throughout the 

study year. This changing SOC value was related to the alteration of agricultural land. 

Agriculture land could store the highest amount of carbon soil biomass. This study 

provided information that agricultural land declined quickly in the research area. As a 

result, it was found that SOC continuously degraded in the Satkhira coastal region. 

The most alarming alteration of carbon value was seen with the alteration of vegetation 

land cover. Vegetation had not only the highest ABG value along with agriculture but 

also the highest BBC carbon value. BBC Carbon value in the Satkhira degraded last 

three decades because it related to vegetation and agricultural land. From the temporal 
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distribution of these two LSC classes, it was observed that these two LSC classes had 

a cumulative relation with the carbon pool value, which degraded the SOC value. This 

study provided a clear overview of blue carbon dynamics and how they are influenced 

by LSC transformation. 

Aljenaid et al. [6] 2022 utilized GIS and RS data to analyze spatiotemporal 

changes in mangrove habitat. Their findings indicated that Tubli Bay has undergone 

considerable human activity starting in the 1960s, which ultimately led to the clearing 

of mangroves. Consequently, the carbon stored in the mangrove environment 

decreased by 85 from 34, 932 Mg C/ha in 1967 to 5, 112 Mg/ha in 2020. As a result, 

with an average of 9874.62 Mg CO2 e yr−1 over the previous 53 years, the potential for 

carbon sequestration grew from 128,200.44 Mg CO2 e ha-1 in 1967 to 18,761.04 Mg 

CO2 e ha−1 in 2020 [6]. 

Ma et al. [21] 2019 presented that their study’s main purpose was to investigate 

how land cover changes affect the spatiotemporal dynamics of coastal blue carbon 

sequestration considering various human-induced and natural driving processes. Their 

key findings were a 78% loss in shrub and forest cover between 1970 and 2010 and a 

1.63 × 106 Mg decline in coastal blue carbon sequestration [21]. 

3.5. Accuracy assessment 

In this study total three accuracy assessments were followed overall accuracy, 

kappa coefficients, and confusion matrix. Google earth pro was used for validation to 

assess the accuracy. 40 samples were taken from each LSC class and compared to 

classified data in the confusion matrix. For study years 1992, 2007, and 2022, the 

confusion matrix was used to represent producer accuracy and user accuracy, 

respectively. The Kappa coefficient was adapted to measure the accuracy of 

classification, which could test all confusion matrix elements based on the minimum 

requirement. In the accuracy assessment, the identified categories of LSC needed to 

achieve the minimum requirements, which were at least 0.8. Table 8 shows the 

validation for LSC in 1992, 2007, and 2022. Diagonal numbers indicate samples that 

were successfully categorized for each LSC class. The kappa coefficients for 1992, 

2007, and 2022 are 0.84, 0.875, and 0.935, respectively. So, the identified categories 

of LSC were corrected because they achieved their minimum requirement, which was 

at least 0.8. 

Table 8. Accuracy assessment table for LSC data obtained from Landsat imagery 

during study years. 

Class TF V W M A BU RT UA (%) 

a. Validation in 1992         

TF 35 2 3 0 0 0 40 87.5 

V 0 36 0 0 4 0 40 90 

W 2 0 34 4 0 0 40 85 

M 0 0 2 34 1 3 40 85 

A 0 0 0 3 37 0 40 92.5 

BU 0 3 2 0 3 32 40 80 

CT 37 41 41 41 45 35 240  
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Table 8. (Continued). 

Class TF V W M A BU RT UA (%) 

PA (%) 94.59 87.8 82.93 82.93 82.22 91.43   

OA (%) 86.67% 

Kappa Coefficient(K) 0.84 

b. Validation in 2007         

TF 36 2 2 0 0 0 40 90 

V 0 35 0 0 2 3 40 87.5 

W 0 0 38 2 0 0 40 95 

M 1 0 3 36 0 0 40 90 

A 0 0 0 2 37 1 40 92.5 

BU 0 5 0 0 2 33 40 82.5 

CT 37 42 43 40 41 37 240  

PA (%) 97.23 83.33 88.37 90 90.24 89.19   

OA (%) 89.58 

Kappa coefficient (K) 0.875 

c. Validation in 2022         

TF 38 1 1 0 0 0 40 88.37 

V 0 38 0 0 1 1 40 88.37 

W 1 0 39 0 0 0 40 97.5 

M 1 0 1 38 0 0 40 88.37 

A 0 2 0 0 36 2 40 90 

BU 0 1 0 0 1 38 40 95 

CT 40 42 41 38 38 41 240  

PA (%) 88.37 90.48 95.12 100 94.74 92.68   

OA (%) 94.58 

Kappa coefficient (K) 0.935 

TF = Tidal flat; V = Vegetation; W = Water body; M = Mariculture; A = Agriculture land; BU = Built-
up area; RT = Row total; UA = User’s accuracy; PA = Producer’s accuracy; OA = Overall accuracy. 

4. Conclusion 

The InVEST carbon model was used to estimate the storage and sequestration of 

blue carbon using the dynamic shift in LSC data of the Satkhira coastal region of 

Bangladesh. The findings showed how the fast loss of agricultural land, forest, and 

tidal flats harmed BCS and storage during the past three decades. This study found 

that carbon sequestration dropped by 27.68% in 2022 and blue carbon storage reduced 

from 11706.12 Mg to 9168.03 Mg between 2022 and 1992. Around 2538.09 Mg of 

carbon were released into the atmosphere in 2022. The total amount of carbon released 

into the atmosphere from 2022 to 1992 had a market worth of almost 0.86 million 

dollars (USD). This result gives essential input to policymakers regarding any 

development activities in the coastal area of Bangladesh. As a result, we have a 

modified LSC ecosystem that affects the blue carbon ecosystem. The ecological aspect 

and environmental sustainability must be considered before adopting any development 

activities, such that strategic position and ease of transit access are not the only 
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important considerations. Our research is anticipated to contribute vital information to 

understanding the dynamics of blue carbon storage and sequestration as these kinds of 

studies are being ignored in management and decision-making policy for the future of 

coastal ecosystems. This research also quantifies the economic value of carbon that is 

stored or emitted into the atmosphere. Quantifying the economic value of carbon is 

vital for the restoration of the blue carbon ecosystem. This collection of findings may 

offer the authorities a dynamic framework for systematic decision-making by 

considering the spatiotemporal variation in carbon storage and sequestration. This 

integrated strategy, which might be used to plan and manage the Satkhira coastal 

ecosystem, considers a variety of factors, including environmental preservation and 

sustainable development. 
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