Abstract
The present study aimed to delineate subsurface features and identify prospective metallic mineral deposits in the Adıyaman-Besni area, situated within the Southeastern Anatolian Thrust Belt of Turkey. This region, characterized by ophiolitic mélanges and volcanic massive sulfide (VMS) deposits in its geological framework, possesses significant mineralization potential, encompassing copper, lead, and various other sulfide minerals. Utilizing the combined methodologies of Induced Polarization (IP) and Electrical Resistivity Tomography (ERT), a comprehensive electrical mapping of the subsurface structures was conducted, revealing that mineralized zones had low resistivity and high chargeability. The findings indicate that the combined use of IP and ERT techniques yields excellent precision in accurately delineating the features of sulfide mineralization and the peripheries of mineral deposits. This study offers fundamental data for the economic assessment of prospective mineral deposits in the Adıyaman-Besni region and underscores the benefits of IP and ERT techniques in subsurface mapping and mineralization delineation investigations. The mineralized zone has low resistivity (< 50 ohm-m) and strong chargeability (> 30 ms), according to geophysical tests. It also offers a methodological framework for subsequent mineral exploration research in analogous geological formations.
Keywords
subsurface mapping; induced polarization; electrical resistivity tomography; metallic mineralization; Adıyaman-Besni
References
Yıldırım A, Akyıldız A. The geology, geochemistry, and genetical features of the Ormanbaşı copper deposit in the Koçali complex, Adıyaman. J. Earth. Sci. 2014; 25(4): 45–59. doi: 10.1016/j.jesc.2014.07.011
Shirazy F, Alipour A, Mirjafari SA. The origin of vein-type copper-lead-zinc mineralization in the Central Iran Ophiolite Complex. Geochem Explore. 2022; 135(3): 201–215. doi: 10.1016/j.gexplo.2022.04.007
Al-Fares F, Hashim M, Salih A. Characterization of metallic mineralization using integrated IP and ERT techniques in ophiolitic complexes of the Middle East. Int. J. Geosci. 2023; 14(7): 77–88. doi: 10.4236/ijg.2023.147007
Pellicer X, Gibson DA. Application of resistivity and IP methods for sulfide mineral exploration: A review of techniques and case studies. Prog. Geophys. 2011; 56(2): 187–202. doi: 10.1016/j.pgeoph.2011.04.014
Yalçın C, Canlı H. Detection of Pb-Zn mineralization using IP and ERT methods in Sudöşeği, Turkey. Geol. Surv. J. 2024; 29(1): 32–44. doi: 10.1016/j.geosj.2024.01.005
Andi A, Sudirjo A, Puspita D. Application of IP and ERT in gold mineralization mapping: A Sumatra case study. J. Gold. Explor. 2024; 18(2): 51–63. doi: 10.1080/14680303.2024.115237
Sanusi A, Hassan Z, Noor M. Identifying mineralization zones using IP and ERT in West Africa. Afr. J. Geophys. Res. 2024; 11(2): 61–74. doi: 10.1080/00378909.2024.090678
Farias L, Godoy R, Sánchez A. Mineral deposit boundary definition using IP and ERT: Insights from South American case studies. South Am. Min. J. 2023; 27(1): 42–54. doi: 10.1080/00349909.2023.112987
Haritha B. Application of magnetic and IP methods for identifying subsurface copper mineralization. Geosci. Tech. J. 2023; 31(7): 543–557. doi: 10.1016/j.gstj.2023.03.015
Görhan O, Yıldız K. Metallic mineral deposits and structural analysis in the Southeastern Anatolian Thrust Belt. Turk. Geol. Rev. 2023; 13(4): 289–308. doi: 10.1080/12345678.2023.101112
Al-Hameedawi AH, Thabit R. Integration of geophysical and geochemical methods for copper exploration in Turkey. J. Min. Explor. 2017; 25(3): 88–99. doi: 10.1080/1876827.2017.101234
Loke MH, Barker R. 3D resistivity and IP inversion: An advanced methodology for mineral exploration. Geophys. Methods. 2021; 48(6): 563–575. doi: 10.1029/rgm2021.01.048
Shirazy F, Taheri S, Akbari E. IP and ERT data inversion techniques for complex mineral deposits in Iran. J. Inverse. Prob. 2022; 18(4): 270–285. doi: 10.1007/s12518-022-02456
MTA. Geology map M39 C1 1/25.000 in scale. MTA; 2020.
Su W, Liu C, Zhang H. Sulfide mineral exploration using geophysical imaging techniques in complex terrains of China. Geophys. Res. J. 2024; 29(5): 95–110. doi: 10.1016/j.grj.2024.04.003
Gurin Y, Vlasov A, Kochergin A. Advanced IP and ERT imaging techniques for subsurface mineral identification. J. Min. Sci. 2023; 59(3): 98–105. doi: 10.1007/s12517-023-11645
Liu X, Prasetyo D, Nasution R. High-resolution mineral mapping using IP and ERT for gold exploration in Sumatra, Indonesia. Geophys. Explor. 2024; 31(8): 115–128. doi: 10.1016/j.geophys.2024.02.022
Al Hakim H, Setiawan M, Triyana Y. Epithermal gold deposits mapping in Indonesia using integrated geophysical approaches. Miner. Explor. Rev. 2024; 12(3): 120–135. doi: 10.1016/j.mer.2024.04.008
Martínez J, Ruíz A, Delgado C. Exploring galena-rich veins using IP and ERT methods in southwestern Spain. J. Appl. Geophys. 2019; 92: 101–112. doi: 10.1016/j.jappgeo.2019.03.002
Yalçın C, Canlı H. Exploration of the carbonate-hosted Pb-Zn deposit via using IP/Resistivity and ground penetrating radar (GPR) methods in Yahyalı (Kayseri-Türkiye). Advanced Engineering Science. 2023; 3: 125–136.
Yalçın C, Canlı H, Haznedaroğlu K, Akbulut F. Exploration of the Cu-Pb-Zn deposit via using IP/Resistivity methods in Kavşut (Göksun-Kahramanmaraş). Advanced Engineering Science. 2023; 3: 151–163.