Application of geophysical methods in subsurface mapping and mineral exploration: Adiyaman-Besni region, Türkiye

Cihan Yalçın, Ali Karan

Article ID: 10193
Vol 7, Issue 2, 2024

VIEWS - 551 (Abstract) 175 (PDF)

Abstract


The present study aimed to delineate subsurface features and identify prospective metallic mineral deposits in the Adıyaman-Besni area, situated within the Southeastern Anatolian Thrust Belt of Turkey. This region, characterized by ophiolitic mélanges and volcanic massive sulfide (VMS) deposits in its geological framework, possesses significant mineralization potential, encompassing copper, lead, and various other sulfide minerals. Utilizing the combined methodologies of Induced Polarization (IP) and Electrical Resistivity Tomography (ERT), a comprehensive electrical mapping of the subsurface structures was conducted, revealing that mineralized zones had low resistivity and high chargeability. The findings indicate that the combined use of IP and ERT techniques yields excellent precision in accurately delineating the features of sulfide mineralization and the peripheries of mineral deposits. This study offers fundamental data for the economic assessment of prospective mineral deposits in the Adıyaman-Besni region and underscores the benefits of IP and ERT techniques in subsurface mapping and mineralization delineation investigations. The mineralized zone has low resistivity (< 50 ohm-m) and strong chargeability (> 30 ms), according to geophysical tests. It also offers a methodological framework for subsequent mineral exploration research in analogous geological formations.


Keywords


subsurface mapping; induced polarization; electrical resistivity tomography; metallic mineralization; Adıyaman-Besni

Full Text:

PDF


References


1. Yıldırım A, Akyıldız A. The geology, geochemistry, and genetical features of the Ormanbaşı copper deposit in the Koçali complex, Adıyaman. J. Earth. Sci. 2014; 25(4): 45–59. doi: 10.1016/j.jesc.2014.07.011

2. Shirazy F, Alipour A, Mirjafari SA. The origin of vein-type copper-lead-zinc mineralization in the Central Iran Ophiolite Complex. Geochem Explore. 2022; 135(3): 201–215. doi: 10.1016/j.gexplo.2022.04.007

3. Al-Fares F, Hashim M, Salih A. Characterization of metallic mineralization using integrated IP and ERT techniques in ophiolitic complexes of the Middle East. Int. J. Geosci. 2023; 14(7): 77–88. doi: 10.4236/ijg.2023.147007

4. Pellicer X, Gibson DA. Application of resistivity and IP methods for sulfide mineral exploration: A review of techniques and case studies. Prog. Geophys. 2011; 56(2): 187–202. doi: 10.1016/j.pgeoph.2011.04.014

5. Yalçın C, Canlı H. Detection of Pb-Zn mineralization using IP and ERT methods in Sudöşeği, Turkey. Geol. Surv. J. 2024; 29(1): 32–44. doi: 10.1016/j.geosj.2024.01.005

6. Andi A, Sudirjo A, Puspita D. Application of IP and ERT in gold mineralization mapping: A Sumatra case study. J. Gold. Explor. 2024; 18(2): 51–63. doi: 10.1080/14680303.2024.115237

7. Sanusi A, Hassan Z, Noor M. Identifying mineralization zones using IP and ERT in West Africa. Afr. J. Geophys. Res. 2024; 11(2): 61–74. doi: 10.1080/00378909.2024.090678

8. Farias L, Godoy R, Sánchez A. Mineral deposit boundary definition using IP and ERT: Insights from South American case studies. South Am. Min. J. 2023; 27(1): 42–54. doi: 10.1080/00349909.2023.112987

9. Haritha B. Application of magnetic and IP methods for identifying subsurface copper mineralization. Geosci. Tech. J. 2023; 31(7): 543–557. doi: 10.1016/j.gstj.2023.03.015

10. Görhan O, Yıldız K. Metallic mineral deposits and structural analysis in the Southeastern Anatolian Thrust Belt. Turk. Geol. Rev. 2023; 13(4): 289–308. doi: 10.1080/12345678.2023.101112

11. Al-Hameedawi AH, Thabit R. Integration of geophysical and geochemical methods for copper exploration in Turkey. J. Min. Explor. 2017; 25(3): 88–99. doi: 10.1080/1876827.2017.101234

12. Loke MH, Barker R. 3D resistivity and IP inversion: An advanced methodology for mineral exploration. Geophys. Methods. 2021; 48(6): 563–575. doi: 10.1029/rgm2021.01.048

13. Shirazy F, Taheri S, Akbari E. IP and ERT data inversion techniques for complex mineral deposits in Iran. J. Inverse. Prob. 2022; 18(4): 270–285. doi: 10.1007/s12518-022-02456

14. MTA. Geology map M39 C1 1/25.000 in scale. MTA; 2020.

15. Su W, Liu C, Zhang H. Sulfide mineral exploration using geophysical imaging techniques in complex terrains of China. Geophys. Res. J. 2024; 29(5): 95–110. doi: 10.1016/j.grj.2024.04.003

16. Gurin Y, Vlasov A, Kochergin A. Advanced IP and ERT imaging techniques for subsurface mineral identification. J. Min. Sci. 2023; 59(3): 98–105. doi: 10.1007/s12517-023-11645

17. Liu X, Prasetyo D, Nasution R. High-resolution mineral mapping using IP and ERT for gold exploration in Sumatra, Indonesia. Geophys. Explor. 2024; 31(8): 115–128. doi: 10.1016/j.geophys.2024.02.022

18. Al Hakim H, Setiawan M, Triyana Y. Epithermal gold deposits mapping in Indonesia using integrated geophysical approaches. Miner. Explor. Rev. 2024; 12(3): 120–135. doi: 10.1016/j.mer.2024.04.008

19. Martínez J, Ruíz A, Delgado C. Exploring galena-rich veins using IP and ERT methods in southwestern Spain. J. Appl. Geophys. 2019; 92: 101–112. doi: 10.1016/j.jappgeo.2019.03.002

20. Yalçın C, Canlı H. Exploration of the carbonate-hosted Pb-Zn deposit via using IP/Resistivity and ground penetrating radar (GPR) methods in Yahyalı (Kayseri-Türkiye). Advanced Engineering Science. 2023; 3: 125–136.

21. Yalçın C, Canlı H, Haznedaroğlu K, Akbulut F. Exploration of the Cu-Pb-Zn deposit via using IP/Resistivity methods in Kavşut (Göksun-Kahramanmaraş). Advanced Engineering Science. 2023; 3: 151–163.




DOI: https://doi.org/10.24294/jgc10193

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Cihan Yalçın, Ali Karan

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.