Vol 7, No 2 (2024)

Table of Contents

Open Access
Article
Article ID: 6086
PDF
by Hüseyin Fırat Kayiran
J. Polym. Sci. Eng. 2024 , 7(2);    228 Views
Abstract In this paper, the characteristic behavior of the disc consisting of thermoplastic composite CF/PA6 material was considered. Analysis was made by taking into account the usage areas of the materials and referring to certain temperatures between 30 ℃ and 150 ℃. Composite materials are lightweight; they show high strength. For these reasons, they are preferred in technology, especially in the aircraft and aerospace industry. With this study, the radial and tangential stresses determined within a certain temperature The temperatures were determined and compared with previous studies in the literature. According to the results obtained, it is believed that the thermoplastic composite CF/PA6 disc design can be used in engineering.
show more
Open Access
Article
Article ID: 7061
PDF
by A. Nayeem Faruqui, Md. Samiur Rahman Tarafdar, Anindya Das Jayanta, Md. Rezaul Karim Sheikh
J. Polym. Sci. Eng. 2024 , 7(2);    437 Views
Abstract Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
show more
Open Access
Article
Article ID: 6758
PDF
by Iara Alves Martins de Souza, Evandro Augusto de Morais, Viviany Geraldo
J. Polym. Sci. Eng. 2024 , 7(2);    299 Views
Abstract We report a method for effectively and homogeneously incorporating carbon nanotubes (CNTs) in the form of double-wall (DWCNTs) and multi-wall (MWCNTs) structures into commercial paints without the use of additives, surfactants, or chemical processes. The process involves the physical mixing of the nanotubes and polymers using the cavitation energy of an ultrasonic bath. It is a simple, fast method that allows for uniform distribution of carbon nanotube bundles within the polymer for direct application. Due to the hydrophobic properties of the carbon nanotubes as grown, we used paint samples containing 0.3% by mass of both types of CNTs and observed an improvement in waterproofing through wettability and water absorption through immersion tests on the samples. Different solvents such as water, formaldehyde, and glycerin were used, and the results showed an increase in paint impermeability of 30% and 25% with the introduction of DWCNTs and MWCNTs, respectively. This indicates a promising, economically viable, and revolutionary method for applying nanotechnology in the polymer industry.
show more
Open Access
Article
Article ID: 6263
PDF
by Luiz Fernando Pimenta Gonçalves, Ariandy Botezini, Erika Peterson Gonçalves
J. Polym. Sci. Eng. 2024 , 7(2);    78 Views
Abstract The search for the development of nanostructured materials has led to the study of the properties of their precursors. For the production of nanofibers by the electrospinning process, it is necessary to determine the rheological parameters of the precursor solutions. Since these properties can be influenced by the processing variables and chemical composition of the polymer, this study aims to elucidate the effect of the addition of vinyl monomers in the formulation of nanofibers based on polyacrylonitrile and to determine the optimal parameters for the production of the precursor polymer solution. The effects of temperature and addition of vinyl monomers were evaluated by rheometry, from the analysis of the variation of the viscosity of the solutions, and by microscopy, the morphology of the nanofibers produced. It was observed that the increase in the temperature used to produce the solutions improves the fibers’ properties. Still, there is a relationship between the time of exposure of the polymeric solution to the temperature and the homogeneity of the fibers, which cannot exceed 45 min. The addition of vinyl monomers, to produce PAN-PVA co-polymeric fibers, increases the conductivity and reduces the viscosity of the solutions, resulting in more refined and homogeneous fibers.
show more
Open Access
Article
Article ID: 7394
PDF
by A. Nayeem Faruqui, Mst. Tamanna Akter, Ria Biswas, Md. Rezaul Karim Sheikh
J. Polym. Sci. Eng. 2024 , 7(2);    4 Views
Abstract In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
show more
Open Access
Review
Article ID: 4220
by Simon Ejededawe Igberaese
J. Polym. Sci. Eng. 2024 , 7(2);    295 Views
Abstract Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
show more
Open Access
Review
Article ID: 6518
PDF
by Feven Mattews Michael, Mohan Raj Krishnan, Edreese Housni Alsharaeh
J. Polym. Sci. Eng. 2024 , 7(2);    236 Views
Abstract This review comprehensively summarizes various preparatory methods of polymeric bone scaffolds using conventional and modern advanced methods. Compilations of the various fabrication techniques, specific composition, and the corresponding properties obtained under clearly identified conditions are presented in the commercial formulations of bone scaffolds in current orthopedic use. The gaps and unresolved questions in the existing database, efforts that should be made to address these issues, and research directions are also covered. Polymers are unique synthetic materials primarily used for bone and scaffold applications. Bone scaffolds based on acrylic polymers have been widely used in orthopedic surgery for years. Polymethyl methacrylate (PMMA) is especially known for its widespread applications in bone repair and dental fields. In addition, the PMMA polymers are suitable for carrying antibiotics and for their sustainable release at the site of infection.
show more
Open Access
Review
Article ID: 6671
PDF
by Mohanraj Raj Krishnan, Edreese Housni Alsharaeh
J. Polym. Sci. Eng. 2024 , 7(2);    98 Views
Abstract This review summarizes some of the recent advances related to shallow penetration conformance sealants (SPCS) based on cross-linked polymer nanocomposite gels. The cross-linked polymer nanocomposite gels formed a three-dimensional (3D) gel structure upon contact with either water or oil when placed at the downhole. Therefore, the cross-linked polymer nanocomposite gels offer a total or partial water shutoff. Numerous polymeric gels and their nanocomposites prepared using various techniques have been explored to address the conformance problems. Nevertheless, their instability at high temperature, high pressure, and high salinity down-hole conditions (HT-HP-HS) often makes the treatments unsuccessful. Incorporating inert particles into the cross-linked polymer nanocomposite gel matrices improves stability under harsh down-hole conditions. This review discusses potential polymeric nanocomposite gels and their successful application in conformance control.
show more
Open Access
Review
Article ID: 8211
PDF
by Mohd Arsalan, Suzain Akhtar, Mohammad Ehtisham Khan
J. Polym. Sci. Eng. 2024 , 7(2);    4 Views
Abstract Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
show more