Fabrication and property analysis of treated and untreated bagasse powder-reinforced epoxy resin composites

A. Nayeem Faruqui, Md. Samiur Rahman Tarafdar, Anindya Das Jayanta, Md. Rezaul Karim Sheikh

Article ID: 7061
Vol 7, Issue 2, 2024

VIEWS - 7 (Abstract) 4 (PDF)

Abstract


Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.


Keywords


bagasse powder; epoxy; microstructure; mechanical properties; eco-friendly

Full Text:

PDF


References


1. Devadiga DG, Bhat KS, Mahesha G. Sugarcane bagasse fiber reinforced composites: Recent advances and applications. Cogent Engineering. 2020; 7(1): 1823159. doi: 10.1080/23311916.2020.1823159

2. Gholampour A, Ozbakkaloglu T. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science. 2019; 55(3): 829–892. doi: 10.1007/s10853-019-03990-y

3. Karimah A, Ridho MR, Munawar SS, et al. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology. 2021; 13: 2442–2458. doi: 10.1016/j.jmrt.2021.06.014

4. Elanchezhian C, Ramnath BV, Ramakrishnan G, et al. Review on mechanical properties of natural fiber composites. Materials Today: Proceedings. 2018; 5(1): 1785–1790. doi: 10.1016/j.matpr.2017.11.276

5. Timung R, Naik Deshavath N, Goud VV, et al. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass. Journal of Energy. 2016; 2016: 1–12. doi: 10.1155/2016/8506214

6. Guna V, Ilangovan M, Hu C, et al. Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Industrial Crops and Products. 2019; 131: 25–31. doi: 10.1016/j.indcrop.2019.01.011

7. Cao Y, Shibata S, Fukumoto I. Mechanical properties of biodegradable composites reinforced with bagasse fiber before and after alkali treatments. Composites Part A: Applied Science and Manufacturing. 2006; 37(3): 423–429. doi: 10.1016/j.compositesa.2005.05.045

8. Singla M, Chawla V. Mechanical Properties of Epoxy Resin-Fly Ash Composite. Journal of Minerals and Materials Characterization and Engineering. 2010; 09(03): 199-210. doi: 10.4236/jmmce.2010.93017

9. Liu Y, Zhang J, Chen R, et al. Ethylene vinyl acetate copolymer modified epoxy asphalt binders: Phase separation evolution and mechanical properties. Construction and Building Materials. 2017; 137: 55–65. doi: 10.1016/j.conbuildmat.2017.01.081

10. Jiang J, Lu Z, Niu Y, et al. Investigation of the properties of high-porosity cement foams containing epoxy resin. Construction and Building Materials. 2017; 154: 115–122. doi: 10.1016/j.conbuildmat.2017.06.178

11. Balguri PK, Samuel DGH, Thumu U. A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings. 2021; 44: 346–355. doi: 10.1016/j.matpr.2020.09.742

12. Mohan PA. Critical Review: The Modification, Properties, and Applications of Epoxy Resins. Polymer-Plastics Technology and Engineering. 2013; 52(2): 107–125. doi: 10.1080/03602559.2012.727057

13. Gwon JG, Lee SY, Chun SJ, et al. Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing. 2010; 41(10): 1491–1497. doi: 10.1016/j.compositesa.2010.06.011

14. Setswalo K, Molaletsa N, Oladijo OP, et al. The Influence of Fiber Processing and Alkaline Treatment on the Properties of Natural Fiber-reinforced Composites: A Review. Applied Science and Engineering Progress. 2021; 14(4): 632–650 doi: 10.14416/j.asep.2021.08.005

15. Naik JB, Mishra S. Esterification effect of maleic anhydride on swelling properties of natural fiber/high density polyethylene composites. Journal of Applied Polymer Science. 2007; 106(4): 2571–2574. doi: 10.1002/app.25329

16. Naik JB, Mishra S. Esterification Effect of Maleic Anhydride on Surface and Volume Resistivity of Natural Fiber/Polystyrene Composites. Polymer-Plastics Technology and Engineering. 2007; 46(5): 537–540. doi: 10.1080/03602550701298630

17. Li G, Shang Y, Wang Y, et al. Reaction Mechanism of Etherification of Rice Straw with Epichlorohydrin in Alkaline Medium. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-50860-3

18. Islam MN, Khatton A, Sarker J, et al. Modification of Jute Fiber by Etherification Method for Diverse Textile Uses. Saudi Journal of Engineering and Technology. 2022; 7(2): 107–111. doi: 10.36348/sjet.2022.v07i02.007

19. Thakur VK, Thakur MK, Gupta RK. Graft copolymers of natural fibers for green composites. Carbohydrate Polymers. 2014; 104: 87–93. doi: 10.1016/j.carbpol.2014.01.016

20. Thakur VK, Thakur MK, Gupta RK. Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydrate Polymers. 2013; 98(1): 820–828. doi: 10.1016/j.carbpol.2013.06.072

21. Xie Y, Hill CAS, Xiao Z, et al. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing. 2010; 41(7): 806–819. doi: 10.1016/j.compositesa.2010.03.005

22. La Mantia FP, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing. 2011; 42(6): 579–588. doi: 10.1016/j.compositesa.2011.01.017

23. Singh T, Tejyan S, Patnaik A, et al. Fabrication of waste bagasse fiber‐reinforced epoxy composites: Study of physical, mechanical, and erosion properties. Polymer Composites. 2019; 40(9): 3777–3786. doi: 10.1002/pc.25239

24. Saini G, Narula AK, Choudhary V, et al. Effect of Particle Size and Alkali Treatment of Sugarcane Bagasse on Thermal, Mechanical, and Morphological Properties of PVC-Bagasse Composites. Journal of Reinforced Plastics and Composites. 2009; 29(5): 731–740. doi: 10.1177/0731684408100693

25. Manikandan P, Nayeem Faruqui A, Raghukandan K, et al. Underwater shock consolidation of Mg–SiC composites. Journal of Materials Science. 2010; 45(16): 4518–4523. doi: 10.1007/s10853-010-4547-8

26. Dixit M, Srivastava R. The effect of copper granules on interfacial bonding and properties of the copper-graphite composite prepared by flake powder metallurgy. Advanced Powder Technology. 2019; 30(12): 3067–3078. doi: 10.1016/j.apt.2019.09.013

27. Prasad L, Kumar S, Patel RV, et al. Physical and Mechanical Behavior of Sugarcane Bagasse Fiber-Reinforced Epoxy Bio-Composites. Materials. 2020; 13(23): 5387. doi: 10.3390/ma13235387

28. Sunarsih S, Andaka G, Wahyuningtyas D. Characterization of morphological changes on modified sugarcane bagasse with potassium hydroxide. Journal of Physics: Conference Series. 2020; 1511(1): 012067. doi: 10.1088/1742-6596/1511/1/012067

29. Bakri MKB, Jayamani E, Hamdan S. Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment. Materials Today: Proceedings. 2017; 4(2): 2871–2878. doi: 10.1016/j.matpr.2017.02.167

30. Bartos A, Anggono J, Farkas ÁE, et al. Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing. 2020; 88: 106549. doi: 10.1016/j.polymertesting.2020.106549

31. Ogah AO, Afiukwa JN. Characterization and comparison of mechanical behavior of agro fiber-filled high-density polyethylene bio-composites. Journal of Reinforced Plastics and Composites. 2013; 33(1): 37–46. doi: 10.1177/0731684413509425

32. Agarwal K, Kuchipudi SK, Girard B, et al. Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods. Journal of Composite Materials. 2018; 52(23): 3173–3181. doi: 10.1177/0021998318762297

33. Kosedag E, Ekici R. Low-velocity impact performance of B4C particle-reinforced Al 6061 metal matrix composites. Materials Research Express. 2019; 6(12): 126556. doi: 10.1088/2053-1591/ab5815

34. Dogra V, Kishore C, Verma A, et al. Fabrication and Experimental Testing of Hybrid Composite Material Having Biodegradable Bagasse Fiber in a Modified Epoxy Resin: Evaluation of Mechanical and Morphological Behavior. Applied Science and Engineering Progress. 2021. doi: 10.14416/j.asep.2021.06.002

35. Adeniyi AG, Onifade DV, Ighalo JO, et al. A review of coir fiber reinforced polymer composites. Composites Part B: Engineering. 2019; 176: 107305. doi: 10.1016/j.compositesb.2019.107305

36. Marichelvam MK, Manimaran P, Verma A, et al. A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: An experimental approach. Polymer Composites. 2020; 42(1): 512–521. doi: 10.1002/pc.25843

37. Asim M, Saba N, Jawaid M, et al. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. Sustainable Composites for Aerospace Applications. 2018; 253–268. doi: 10.1016/b978-0-08-102131-6.00012-8

38. Oliveira SL, Mendes RF, Mendes LM, et al. Particleboard Panels Made from Sugarcane Bagasse: Characterization for Use in the Furniture Industry. Materials Research. 2016; 19(4): 914–922. doi: 10.1590/1980-5373-mr-2015-0211




DOI: https://doi.org/10.24294/jpse.v7i2.7061

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 A. Nayeem Faruqui, Md. Samiur Rahman Tarafdar, Anindya Das Jayanta, Md. Rezaul Karim Sheikh

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.