Studies of the structure and properties of polymer dispersed liquid crystal films to create a polarizer
Vol 7, Issue 2, 2024
Abstract
A novel composite material based on polymers (polyvinyl alcohol, polyvinyl butyral) and liquid crystal (4-n-pentyl-4’-cyanobiphenyl) has been developed and studied. Configuration transformations of point defects in nematic droplets under the influence of an electric field, caused by localized changes in the concentration of NLC within the polymer matrix, have been discovered and analyzed. The boundary conditions necessary for achieving a nematic structure with homogeneous alignment of the director both within the droplet and at its surface have been established, optimizing the anisotropy of light transmission in polymer-dispersed liquid crystal (PDLC) films. Additionally, polarization effects inside nematic droplets under the application of an electric field have been identified.
Keywords
Full Text:
PDFReferences
1. Gunning WJ, Foschaar J. Improvement in the transmission of iodine-polyvinyl alcohol polarizers. Applied Optics. 1983; 22(20): 3229. doi: 10.1364/ao.22.003229
2. Zwick MM. The blue complexes of iodine with poly(vinyl alcohol) and amylose. Journal of Polymer Science Part A-1: Polymer Chemistry. 1966; 4(6): 1642-1644. doi: 10.1002/pol.1966.150040626
3. Nagy AW, Trapani GB. Polarizer lamination. U.S. Patent 4025688, 24 May 1977.
4. Hecht E. Optics, 2nd ed. MA: Addison Wesley; 1990.
5. Sutormin VS, Timofeev IV, Krakhalev MN, et al. Transformation of cholesteric orientational structures and optical textures induced by the electric field–driven ionic modification of surface anchoring. Bulletin of the Russian Academy of Sciences: Physics. 2017; 81(5): 602-604. doi: 10.3103/s1062873817050239
6. Gunyakov VA, Krakhalev MN, Zyryanov VYa, et al. Modulation of defect modes intensity by controlled light scattering in photonic crystal with liquid crystal domain structure. Journal of Quantitative Spectroscopy and Radiative Transfer. 2016; 178: 152-157. doi: 10.1016/j.jqsrt.2015.11.018
7. Egamov MH. Anisotropy of light scattering of polymer-liquid crystal composite systems under uniaxial tension. Fundamental problems of modern materials science. 2012; 1-2: 675-680.
8. Egamov MKh, Makhsudov BI, Fayzulloev IKh,. Optical Hysteresis in Composites Based On Polymernematic Liquid Crystal Under Uniaxial Deformation. Russian Physics Journal. 2022; 65(3): 488-492. doi: 10.1007/s11182-022-02659-5
9. Zyryanov VYa, Smorgon SL, Shabanov VF. Elongated films of polymer-dispersed liquid crystals as scattering polarizers. Molecular Engineering. 1992; 1(4). doi: 10.1007/bf00176802
10. Zyryanov VYa. Uniaxially Oriented Films of Polymer Dispersed Liquid Crystals: Textures, Optical Properties and Applications. Molecular Crystals and Liquid Crystals. 2005; 438(1): 163/[1727]-173/[1737]. doi: 10.1080/15421400590956018
11. Drzaic PS. Liquid Crystal Dispersions. Series on Liquid Crystals. 1995; 1: 448. doi: 10.1142/2337
12. Egamov MK. Rotations of the plane of polarization of light radiation in nematic liquid crystals. Fundamental problems of modern materials science. 2024; 21(2): 199-204.
13. Kitzerow HS. Polymer-dispersed liquid crystals From the nematic curvilinear aligned phase to ferroelectric films. Liquid Crystals. 1994; 16(1): 1-31. doi: 10.1080/02678299408036517
14. Rakhimova UJ. The effect of light scattering of polymer-liquid crystal composites with spontaneous self-organization of the structure. Izvestiya NAS Tajikistan. 2022; 3: 78-84.
15. Kovalchuk AV, Kurik MV, Lavrentovich OD, Sergan VV. Structural transformations in nematic droplets in an external electric field. JETPh. 1988; 94(5): 350-364.
16. Xie A, Higgins DA. Electric-field-induced dynamics in radial liquid crystal droplets studied by multiphoton-excited fluorescence microscopy. Applied Physics Letters. 2004; 84(20): 4014-4016. doi: 10.1063/1.1748846
17. Loiko VA, Zyryanov VYa, Konkolovich AV, et al. Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring. Optics and Spectroscopy. 2016; 120(1): 143-152. doi: 10.1134/s0030400x16010112
18. Rakhimova UJ, Egamov MH. Structural modifications of polymer-liquid crystal composites with spontaneous self-organization of the structure. Reports of the National Academy of Sciences of Tajikistan. 2021; 64(11-12): 682-686.
19. Madhusudana NV, Sumathy KR. Nematic Droplets With a New Structure. Molecular Crystals and Liquid Crystals. 1983; 92(7): 179-185. doi: 10.1080/01406568308084057
20. Kim YK, Shiyanovskii SV, Lavrentovich OD. Morphogenesis of defects and tactoids during isotropic–nematic phase transition in self-assembled lyotropic chromonic liquid crystals. Journal of Physics: Condensed Matter. 2013; 25(40): 404202. doi: 10.1088/0953-8984/25/40/404202
21. Drzaic PS. A case of mistaken identity: spontaneous formation of twisted bipolar droplets from achiral nematic materials. Liquid Crystals. 1999; 26(5): 623-627. doi: 10.1080/026782999204660
22. Ryschenkow G, Kleman M. Surface defects and structural transitions in very low anchoring energy nematic thin films. The Journal of Chemical Physics. 1976; 64(1): 404-412. doi: 10.1063/1.431934
23. Petrov VI, Spivak GV, Pavlyuchenko OP. Electron microscopy of the magnetic structure of thin films. Uspekhi Fizicheskih Nauk. 1972; 106(2): 229. doi: 10.3367/ufnr.0106.197202b.0229
24. Bloch F. Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Zeitschrift für Physik. 1932; 74(5-6): 295-335. doi: 10.1007/bf01337791
DOI: https://doi.org/10.24294/jpse8606
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Мukhtor Egamov
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.