Studies of the structure and properties of polymer dispersed liquid crystal films to create a polarizer
Vol 7, Issue 2, 2024
(Abstract)
Abstract
A novel composite material based on polymers (polyvinyl alcohol, polyvinyl butyral) and liquid crystal (4-n-pentyl-4’-cyanobiphenyl) has been developed and studied. Configuration transformations of point defects in nematic droplets under the influence of an electric field, caused by localized changes in the concentration of NLC within the polymer matrix, have been discovered and analyzed. The boundary conditions necessary for achieving a nematic structure with homogeneous alignment of the director both within the droplet and at its surface have been established, optimizing the anisotropy of light transmission in polymer-dispersed liquid crystal (PDLC) films. Additionally, polarization effects inside nematic droplets under the application of an electric field have been identified.
Keywords
Full Text:
PDFReferences
1. Gunning W.J.; Foschaar J. Improvement in the transmission of iodine-polyvinyl alcohol polarizers //Applied Optics. – 1983. –V.22. – № 20. – P. 3229-3231.
2. Zwick M.M. The blue complexes of iodine in polyvinyl alcohol //J. Polymer Science. – Pt. A-1. 1966. – Vol4. – P.1642-1644.
3. Nagy A.W.; Trapani G.B. Polarizer lamination /pat. US 40256889 (A); IPC1-7; B32B15/08; Go2B5/30; Go2BF1/1335 //Applicant Polaroid Corporation. – Appl. Number US 19750634635; appl. 19751124; publ.19770524
4. Hecht E. Optics. //– 2nd ed. – MA: Addison Wesley. – 1990. – Chapter 8.
5. Sutormin V.S; Timofeev I.V.; Krakhalev M.N.; Prishchepa O.O.; Zyryanov V.Ya. Transformation of orientation structures and optical textures of cholesteric induced electrically controlled ion modification anchoring transition //Izvestia RAN. Physics series. 2017. V. 81. No. 5. – p. 649-652
6. Gunyakov V.A.; Krakhalev M.N.; Zyryanov V.Ya.; Shabanov V.F.; Loiko V.A. Modulation of defect modes intensity by controlled light scattering in photonic crystal with liquid crystal domain structure // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. No. 178. – p. 263-268
7. Egamov M.H. Anisotropy of light scattering of polymer-liquid crystal composite systems under uniaxial tension //Fundamental problems of modern materials science. 2012. – No.1-2. – pp. 675-680.
8. Egamov M.Kh.; Maksudov B.I.; Faizulloev I.Kh. Optical hysteresis in composites based on polymer-nematic liquid crystal under uniaxial deformation //Russian Physics Journal; 2022; Vol. 65; №3. –p.488-492
9. Zyryanov V.Ya.; Smorgon S.L.; Shabanov V.F. Elongated films of polymer dispersed liquid crystals as scattering polarizers // Molecular Engineering. – 1992. – Vol. 1. – №4. –P. 305–310.
10. Zyryanov V.Ya. Uniaxially Oriented Films of Polymer Dispersed Liquid Crystals: Textures; Optical Properties and Applications // Mol. Cryst. Liq. Cryst. – 2005. Vol. 438. – No. 1. – P. 163/[1727]-173[1737].
11. Drzaic P.S. Liquid crystal dispersions // Singapore: World Scientific. – 1995. – 428 p.
12. Egamov M.Kh. Rotations of the plane of polarization of light radiation in nematic liquid crystals //Fundamental problems of modern materials science. 2024. Vol. 21; No.2. – pp. 199-204
13. Kitzerov H.S. Polymer dispersed liquid crystals. From the nematic curvilinear aligned phase to ferroelectric films //Liq. Cryst. – 1994. –Vol.16. – No. 1. – P.1-31.
14. Rakhimova U.J. The effect of light scattering of polymer-liquid crystal composites with spontaneous self-organization of the structure //Izvestiya NAS Tajikistan. - 2022. – No. 3. – pp. 78-84.
15. Kovalchuk A.V.; Kurik M.V.; Lavrentovich O.D.; Sergan V.V. Structural transformations in nematic droplets in an external electric field. //JETPh- 1988. – vol. 94. – No. 5. – pp. 350-364.
16. Xie; A.; Higgings D.A. Electric-field-induced dynamics in radial liquid crystal droplets studied by multiphoton-excited fluorescence microscopy //Appl. Phys. Lett. – 2004. – Vol. 84 – P. 4014–4016.
17. Loiko V.A.; Konkolovich A.V.; Miskevich A.A.; Zyryanov V.Ya. Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring //J. Quant. Spectr.; Radiat. Transf. – 2016. – Vol. 178. – P. 243-152.
18. Rakhimova U.J.; Egamov M.H. Structural modifications of polymer-liquid crystal composites with spontaneous self-organization of the structure //Reports of the National Academy of Sciences of Tajikistan. - 2021. – Volume 64. – No. 11-12. – pp. 682-686.
19. Madhusudana N.V.; Sumathy K.R. Nematic droplets with a new structure // Mol. Cryst. Liq. Cryst. – 1983. – Vol. 92 (Letters). – P. 179–185.
20. Kim Y.K.; Shiyanovskii S.V.; Lavrentovich O.D. Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals //J. Phys. Condens. Matter. – 2013. – Vol. 25 – P. 404202.
21. Drzaic P.S. A case of mistaken identity: spontaneous formation of twisted bipolar droplets from achiral nematic materials //Liq. Cryst. – 1999. – № 26. – P. 623–627.
22. Ryschenkow G.; Kleman M. Surface defects and structural transitions in very low anchoring energy nematic thin films //J. Chem. Phys. – 1976. – Vol. 64. – P. 404–412.
23. Petrov V.I.; Spivak G.V.; Pavlyuchenko O.P. Electron microscopy of the magnetic structure of thin films //UFN; 1972; Volume 106; Issue 2. – p. 229-278.
24. Bloch F. Zur theorie des austausch problems und remanenzersccheinung der ferromagnetika //Ztschr. Phys. 1932. Bd. 74; No. 5/6. – p. 295-335
DOI: https://doi.org/10.24294/jpse8606
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Мukhtor Egamov
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.