Synthetic composite membranes and their manifold applications: A comprehensive review
Vol 7, Issue 2, 2024
VIEWS - 1114 (Abstract)
Abstract
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
Keywords
Full Text:
PDFReferences
- Li Q, Wen C, Yang J, et al. Zwitterionic Biomaterials. Chemical Reviews. 2022; 122(23): 17073-17154. doi: 10.1021/acs.chemrev.2c00344
- Drioli E, Romano M. Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth. Industrial & Engineering Chemistry Research. 2001; 40(5): 1277-1300. doi: 10.1021/ie0006209
- De Bartolo L, Curcio E, Drioli E. Membrane systems: for bioartificial organs and regenerative medicine. Walter de Gruyter GmbH & Co KG; 2017.
- Legallais C, Kim D, Mihaila SM, et al. Bioengineering Organs for Blood Detoxification. Advanced Healthcare Materials. 2018; 7(21). doi: 10.1002/adhm.201800430
- Chorsi MT, Curry EJ, Chorsi HT, et al. Piezoelectric Biomaterials for Sensors and Actuators. Advanced Materials. 2018; 31(1). doi: 10.1002/adma.201802084
- Salatino JW, Ludwig KA, Kozai TDY, et al. Glial responses to implanted electrodes in the brain. Nature Biomedical Engineering. 2017; 1(11): 862-877. doi: 10.1038/s41551-017-0154-1
- Nunes SP, Culfaz-Emecen PZ, Ramon GZ, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science. 2020; 598: 117761. doi: 10.1016/j.memsci.2019.117761
- Yang Z, Zhou Y, Feng Z, et al. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers. 2019; 11(8): 1252. doi: 10.3390/polym11081252
- Osada Y, Nakagawa T. Membrane science and technology. CRC Press; 1992.
- Dell RM, Rand DAJ. Energy storage—a key technology for global energy sustainability. Journal of power sources. 2001; 100: 2-17.
- Dudchenko N, Pawar S, Perelshtein I, et al. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. Materials. 2022; 15(7): 2601. doi: 10.3390/ma15072601
- Baker RW. Membrane technology and applications. John Wiley & Sons; 2023.
- Goh PS, Ismail AF. A review on inorganic membranes for desalination and wastewater treatment. Desalination. 2018; 434: 60-80. doi: 10.1016/j.desal.2017.07.023
- Kayvani Fard A, McKay G, Buekenhoudt A, et al. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials. 2018; 11(1): 74. doi: 10.3390/ma11010074
- Agboola O, Fayomi OSI, Ayodeji A, et al. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes. 2021; 11(2): 139. doi: 10.3390/membranes11020139
- Lau WJ, Lai GS, Li J, et al. Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: A review. Journal of Industrial and Engineering Chemistry. 2019; 77: 25-59. doi: 10.1016/j.jiec.2019.05.010
- Alihemati Z, Hashemifard SA, Matsuura T, et al. Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination. 2020; 491: 114557. doi: 10.1016/j.desal.2020.114557
- Goh PS, Ismail AF, Sanip SM, et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology. 2011; 81(3): 243-264. doi: 10.1016/j.seppur.2011.07.042
- Yazid AF, Mukhtar H, Nasir R, et al. Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review. Membranes. 2022; 12(6): 589. doi: 10.3390/membranes12060589
- Li Y, He G, Wang S, et al. Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A. 2013; 1(35): 10058. doi: 10.1039/c3ta01652h
- Aziz T, Li W, Zhu J, et al. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. International Journal of Biological Macromolecules. 2024; 278: 134695. doi: 10.1016/j.ijbiomac.2024.134695
- Li C, Sun W, Lu Z, et al. Ceramic nanocomposite membranes and membrane fouling: A review. Water Research. 2020; 175: 115674. doi: 10.1016/j.watres.2020.115674
- Osman AI, Chen Z, Elgarahy AM, et al. Membrane Technology for Energy Saving: Principles, Techniques, Applications, Challenges, and Prospects. Advanced Energy and Sustainability Research. 2024; 5(5). doi: 10.1002/aesr.202400011
- Wang LK, Chen JP, Hung YT, et al. Membrane and Desalination Technologies. Humana Press; 2011. doi: 10.1007/978-1-59745-278-6
- Khulbe K, Matsuura T. Synthetic membrane characterisation–a review: part I. Membrane Technology. 2017; 7-12.
- Khulbe KC, Feng C, Matsuura T. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science. 2009; 115(2): 855-895. doi: 10.1002/app.31108
- Wang H, Wang M, Liang X, et al. Organic molecular sieve membranes for chemical separations. Chemical Society Reviews. 2021; 50(9): 5468-5516. doi: 10.1039/d0cs01347a
- Bohr SJ, Wang F, Metze M, et al. State-of-the-art review of porous polymer membrane formation characterization—How numerical and experimental approaches dovetail to drive innovation. Frontiers in Sustainability. 2023; 4. doi: 10.3389/frsus.2023.1093911
- Adu-Ahyiah M, Anku RE. Small scale wastewater treatment in Ghana (a scenerio). Retrieved; 2010.
- Al Aani S, Mustafa TN, Hilal N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering. 2020; 35: 101241. doi: 10.1016/j.jwpe.2020.101241
- Iwuozor KO. Prospects and Challenges of Using Coagulation-Flocculation method in the treatment of Effluents. Advanced Journal of Chemistry-Section A. 2019: 105-127. doi: 10.29088/sami/ajca.2019.2.105127
- de Peón CM. Organic micropollutants in reverse osmosis water treatments, presence and rejection. Universitat Rovira i Virgili; 2015.
- Fritzmann C, Löwenberg J, Wintgens T, et al. State-of-the-art of reverse osmosis desalination. Desalination. 2007; 216(1-3): 1-76. doi: 10.1016/j.desal.2006.12.009
- Azapagic A, Emsley A, Hamerton L. Polymers, the Environment and Sustainable Development. Published online February 14, 2003. doi: 10.1002/0470865172
- Maranchi JP, Trexler MM, Guo Q, et al. Fibre-reinforced hydrogels with high optical transparency. International Materials Reviews. 2014; 59(5): 264-296. doi: 10.1179/1743280414y.0000000032
- Darwish M, Hassabou AH, Shomar B. Using Seawater Reverse Osmosis (SWRO) desalting system for less environmental impacts in Qatar. Desalination. 2013; 309: 113-124. doi: 10.1016/j.desal.2012.09.026
- Najib S, Fadili A, Mehdi K, et al. Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences. 2016; 115: 17-31. doi: 10.1016/j.jafrearsci.2015.12.010
- Ghernaout D. Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview. American Journal of Chemical Engineering. 2017; 5(4): 81. doi: 10.11648/j.ajche.20170504.1
- Jaspal D, Malviya A, El Allaoui B, et al. Emerging advances of composite membranes for seawater pre-treatment: a review. Water Science & Technology. 2023; 88(2): 408-429. doi: 10.2166/wst.2023.220
- Liu G. A study on sustainable urban water management in small and medium sized cities in China. Dortmund Technische Universität, Diss; 2012.
- Prest EI, Hammes F, van Loosdrecht MCM, et al. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Frontiers in Microbiology. 2016; 7. doi: 10.3389/fmicb.2016.00045
- Schaefer DH, Thiros SA, Rosen MR. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003. Scientific Investigations Report. 2005. doi: 10.3133/sir20055232
- Tareemi AA, Sharshir SW. A state-of-art overview of multi-stage flash desalination and water treatment: Principles, challenges, and heat recovery in hybrid systems. Solar Energy. 2023; 266: 112157. doi: 10.1016/j.solener.2023.112157
- Faroon M, ALSaad Z, Albadran F, et al. Review on Technology-Based on Reverse Osmosis. Anbar Journal of Engineering Sciences. 2023; 14(1): 89-97. doi: 10.37649/aengs.2023.139414.1047
- Buonomenna MG. Membrane processes for a sustainable industrial growth. RSC Advances. 2013; 3(17): 5694. doi: 10.1039/c2ra22580h
- Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use. Elsevier; 2003.
- Zhang S, Zhang W, Zhou X, et al. Interaction of water mists with bibulous filter media and hygroscopic particles in pressure drop jump of fibrous filter media. Chemical Engineering Science. 2024; 285: 119544. doi: 10.1016/j.ces.2023.119544
- Tian X, Yu H, Yang J, et al. Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination. Frontiers of Environmental Science & Engineering. 2021; 16(7). doi: 10.1007/s11783-021-1497-0
- Milad G, Kijoon L, Yujuan H, et al. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Additive Manufacturing. 2020; 32: 101011Kearns VR. Surface engineering of dental implants using a deposition of nano-features. The University of Liverpool (United Kingdom); 2007.
- Jafari M, Rezvanpour A. Upconversion nano-particles from synthesis to cancer treatment: A review. Advanced Powder Technology. 2019; 30(9): 1731-1753. doi: 10.1016/j.apt.2019.05.027
- Kumar S, Ye F, Dobretsov S, et al. Nanocoating Is a New Way for Biofouling Prevention. Frontiers in Nanotechnology. 2021; 3. doi: 10.3389/fnano.2021.771098
- Shi X, Tal G, Hankins NP, et al. Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering. 2014; 1: 121-138. doi: 10.1016/j.jwpe.2014.04.003
- Goosen MFA, Sablani SS, Al‐Hinai H, et al. Fouling of Reverse Osmosis and Ultrafiltration Membranes: A Critical Review. Separation Science and Technology. 2005; 39(10): 2261-2297. doi: 10.1081/ss-120039343
- Yuan Z, Olsson G, Cardell-Oliver R, et al. Sweating the assets – The role of instrumentation, control and automation in urban water systems. Water Research. 2019; 155: 381-402. doi: 10.1016/j.watres.2019.02.034
- Liu R. Synthesis and Characterization of Novel Polybenzimidazoles and Post-modifications for Membrane Separation Applications. Virginia Tech; 2018.
- Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews. 2016; 45(21): 5888-5924. doi: 10.1039/c5cs00579e
- Mohammad AW, Teow YH, Ang WL, et al. Nanofiltration membranes review: Recent advances and future prospects. Desalination. 2015; 356: 226-254. doi: 10.1016/j.desal.2014.10.043
- Zhu L, Liu X, Lund R. Graduate Research and Discovery Symposium (GRADS). Clemson University; 2018.
- He X, Hägg MB. Membranes for Environmentally Friendly Energy Processes. Membranes. 2012; 2(4): 706-726. doi: 10.3390/membranes2040706
- Vallet-Regí M. Mesoporous Silica Nanoparticles: Their Projection in Nanomedicine. ISRN Materials Science. 2012; 2012: 1-20. doi: 10.5402/2012/608548
- Roorda N. Fundamentals of Sustainable Development. Routledge; 2020. doi: 10.4324/9781003052517
- Kertik A, Wee LH, Pfannmöller M, et al. Highly selective gas separation membrane using in situ amorphised metal–organic frameworks. Energy & Environmental Science. 2017; 10(11): 2342-2351. doi: 10.1039/c7ee01872j
- Kimble MC, White RE, Tsou Y, et al. Estimation of the Diffusion Coefficient and Solubility for a Gas Diffusing Through a Membrane. Journal of The Electrochemical Society. 1990; 137(8): 2510-2514. doi: 10.1149/1.2086977
- Lau CH, Li P, Li F, et al. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science. 2013; 38(5): 740-766. doi: 10.1016/j.progpolymsci.2012.09.006
- Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. Membranes. 2020; 10(10): 297. doi: 10.3390/membranes10100297
- Olabi AG, Onumaegbu C, Wilberforce T, et al. Critical review of energy storage systems. Energy. 2021; 214: 118987. doi: 10.1016/j.energy.2020.118987
- Xu J, Cai X, Cai S, et al. High‐Energy Lithium‐Ion Batteries: Recent Progress and a Promising Future in Applications. Energy & Environmental Materials. 2023; 6(5). doi: 10.1002/eem2.12450
- Badwal SPS, Giddey SS, Munnings C, et al. Emerging electrochemical energy conversion and storage technologies. Frontiers in Chemistry. 2014; 2. doi: 10.3389/fchem.2014.00079
- Rashidi S, Karimi N, Sunden B, et al. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors. Progress in Energy and Combustion Science. 2022; 88: 100966. doi: 10.1016/j.pecs.2021.100966
- Ogungbemi E, Wilberforce T, Ijaodola O, et al. Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells. International Journal of Energy Research. 2020; 45(2): 1227-1245. doi: 10.1002/er.5810
- Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells. Nature. 2021; 595(7867): 361-369. doi: 10.1038/s41586-021-03482-7
- Wang Y, Chen KS, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy. 2011; 88(4): 981-1007. doi: 10.1016/j.apenergy.2010.09.030
- de Bruijn FA, Makkus RC, Mallant RK, et al. Materials for state-of-the-art PEM fuel cells, and their suitability for operation above 100 C. Advances in fuel cells. 2007; (1): 235-336.
- Zahid M, Savla N, Pandit S, et al. Microbial desalination cell: Desalination through conserving energy. Desalination. 2022; 521: 115381. doi: 10.1016/j.desal.2021.115381
- Prifti H, Parasuraman A, Winardi S, et al. Membranes for Redox Flow Battery Applications. Membranes. 2012; 2(2): 275-306. doi: 10.3390/membranes2020275
- He X, Bresser D, Passerini S, et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials. 2021; 6(11): 1036-1052. doi: 10.1038/s41578-021-00345-5
- Cunha Á, Martins J, Rodrigues N, et al. Vanadium redox flow batteries: a technology review. International Journal of Energy Research. 2014; 39(7): 889-918. doi: 10.1002/er.3260
- Zagorodni AA. Ion exchange materials: properties and applications. Elsevier; 2006.
- SenGupta AK. Ion exchange in environmental processes: Fundamentals, applications and sustainable technology. John Wiley & Sons; 2017.
- Liu H, Zhang X, Xu N, et al. Progress of One-Dimensional SiC Nanomaterials: Design, Fabrication and Sensing Applications. Nanomaterials. 2024; 14(2): 187. doi: 10.3390/nano14020187
- Zhang Y, Li L, Su H, et al. Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A. 2015; 3(1): 43-59. doi: 10.1039/c4ta04996a
- Saikia BK, Benoy SM, Bora M, et al. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel. 2020; 282: 118796. doi: 10.1016/j.fuel.2020.118796
- Schnell J, Günther T, Knoche T, et al. All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. Journal of Power Sources. 2018; 382: 160-175. doi: 10.1016/j.jpowsour.2018.02.062
- Yan J, Li S, Lan B, et al. Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials. 2019; 30(2). doi: 10.1002/adfm.201902564
- Zakrzewska-Trznadel G. Membrane processes for environmental protection: applications in nuclear technology. Nukleonika. 2006; (51): 101-111.
- Khayet M. Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes. Desalination. 2013; 321: 60-66. doi: 10.1016/j.desal.2013.02.023
- Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment. 2018; 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161
- Nazir A, Khan K, Maan A, et al. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends in Food Science & Technology. 2019; 86: 426-438. doi: 10.1016/j.tifs.2019.02.049
- Anis SF, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination. 2019; 452: 159-195. doi: 10.1016/j.desal.2018.11.006
- Sarbatly R, Sariau J, Krishnaiah D. Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices. Food Engineering Reviews. 2023; 15(3): 420-437. doi: 10.1007/s12393-023-09346-2
- Davies M, Hamilton C, Murphy S, et al. Polymer membranes in clinical sensor applications: I. An overview of membrane function. Biomaterials. 1992; (13): 971-978.
- Said N, Lau WJ, Ho YC, et al. A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. Membranes. 2021; 11(10): 767. doi: 10.3390/membranes11100767
- Mostafavi AH, Mishra AK, Ulbricht M, et al. Oxygenation and membrane oxygenators: emergence, evolution and progress in material development and process enhancement for biomedical applications. Journal of Membrane Science and Research. 2021; (7): 230-259.
- Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue‐Specific Implications for Biocompatibility. Advanced Healthcare Materials. 2022; 11(9). doi: 10.1002/adhm.202102087
- Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers. 2023; 15(3): 619. doi: 10.3390/polym15030619
- Satel S. Desperately seeking a kidney. The New York Times. 2007; 16.
- Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules. 2023; 28(3): 1259. doi: 10.3390/molecules28031259
- Pusch W, Walch A. Synthetic Membranes—Preparation, Structure, and Application. Angewandte Chemie International Edition in English. 1982; 21(9): 660-685. doi: 10.1002/anie.198206601
- Cooley DA. Con: beating-heart surgery for coronary revascularization: is it the most important development since the introduction of the heart-lung machine? The Annals of thoracic surgery. 2000; (70): 1779-1781.
- Sweetser S. Gastrointestinal manifestations of systemic diseases. Yamada’s Textbook of Gastroenterology. Published online February 18, 2022: 2231-2273. doi: 10.1002/9781119600206.ch111
- Oprea D, Sanz CG, Barsan MM, et al. PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. Biosensors. 2022; 12(7): 500. doi: 10.3390/bios12070500
- Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill New York; 1996.
- Herman PM, Craig BM, Caspi O. Is complementary and alternative medicine (CAM) cost-effective? a systematic review. BMC Complementary and Alternative Medicine. 2005; 5(1). doi: 10.1186/1472-6882-5-11
- Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, et al. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. Membranes. 2021; 11(4): 239. doi: 10.3390/membranes11040239
- Hafez T, Fuller B. Applications. Advances in Biopreservation. 2006: 197-270. doi: 10.1201/9781420004229.ch9.
- Fabrizio M. Management of Challenging Cardiopulmonary Bypass Separation. National Institution of Health; 2020.
- Salgado AJ, Oliveira JM, Martins A, et al. Tissue Engineering and Regenerative Medicine. Tissue Engineering of the Peripheral Nerve: Stem Cells and Regeneration Promoting Factors. Published online 2013: 1-33. doi: 10.1016/b978-0-12-410499-0.00001-0
- Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect. 2021; 6(2): 154-176. doi: 10.1002/slct.202003978
- Morsada Z, Hossain MM, Islam MT, et al. Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today. 2021; 25: 101257. doi: 10.1016/j.apmt.2021.101257
- Sharma A, Kokil GR, He Y, et al. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioactive Materials. 2023; 24: 535-550. doi: 10.1016/j.bioactmat.2023.01.003
- Mrzljak A, Novak R, Pandak N, et al. Emerging and neglected zoonoses in transplant population. World Journal of Transplantation. 2020; 10(3): 47-63. doi: 10.5500/wjt.v10.i3.47
- Gao X, Han S, Zhang R, et al. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. Journal of Materials Chemistry B. 2019; 7(45): 7075-7089. doi: 10.1039/c9tb01730e
- Yusuf A, Sodiq A, Giwa A, et al. A review of emerging trends in membrane science and technology for sustainable water treatment. Journal of Cleaner Production. 2020; 266: 121867. doi: 10.1016/j.jclepro.2020.121867
- Gkotsis P, Banti D, Peleka E, et al. Fouling Issues in Membrane Bioreactors (MBRs) for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies. Processes. 2014; 2(4): 795-866. doi: 10.3390/pr2040795
- Aristizábal SL, Lively RP, Nunes SP. Solvent and thermally stable polymeric membranes for liquid molecular separations: Recent advances, challenges, and perspectives. Journal of Membrane Science. 2023; 685: 121972. doi: 10.1016/j.memsci.2023.121972
- Karki S, Hazarika G, Yadav D, et al. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination. 2024; 573: 117200. doi: 10.1016/j.desal.2023.117200
- Goh PS, Matsuura T, Ismail AF, et al. Recent trends in membranes and membrane processes for desalination. Desalination. 2016; 391: 43-60. doi: 10.1016/j.desal.2015.12.016
- Ghafoori S, Omar M, Koutahzadeh N, et al. New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-the-art review. Separation and Purification Technology. 2022; 289: 120652. doi: 10.1016/j.seppur.2022.120652
- Liu G, Jin W, Xu N. Graphene-based membranes. Chemical Society Reviews. 2015; 44(15): 5016-5030. doi: 10.1039/c4cs00423j
- Ismail AF, Padaki M, Hilal N, et al. Thin film composite membrane—Recent development and future potential. Desalination. 2015; 356: 140-148. doi: 10.1016/j.desal.2014.10.042
- Han Z yang, Huang L jun, Qu H jiao, et al. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. Journal of Materials Science. 2021; 56(16): 9545-9574. doi: 10.1007/s10853-021-05873-7
- Sabih Q, Naveed R, Waqas A. Graphene dispersion, functionalization techniques and applications: A review. Synthetic Metals. 2024; 307: 117697-117710. doi: 10.1016/j.synthmet.2024.117697
DOI: https://doi.org/10.24294/jpse8211
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mohd Arsalan, Suzain Akhtar, Mohammad Ehtisham Khan
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.