Table of Contents
Adenosine triphosphate (ATP) is known as an energy source and is generated by mitochondria which is the powerhouse of the cell. The ATP supplies energy through the disassociation of the phosphate group by the cellular enzymes. The extracellular ATP in the extracellular environment acts as a signaling molecule and can act as an anti-inflammatory molecule, can promote cancer progression, and also can act as a pro-inflammatory molecule. The degradation of ATP is a major disadvantage by ectonucleotidases that attenuates the therapeutic property of ATP in the extracellular environment. We have formulated chitosan/alginate nanoparticles loaded with ATP for increasing their encapsulation efficiency and for sustained drug release. This encapsulation can avoid ATP degradation from ectonucleotidases. Nanoparticle characterization by DLS, FTIR, SEM, encapsulation efficiency, and cytotoxicity assay by XTT assay and Live-dead assay was monitored for the synthesized nano formulated ATP. Our results showed that the formulated ATP-loaded chitosan/alginate nanoparticle sized about 342 nm with the optimum encapsulation efficiency of about 92.03% with a sustained drug release profile. These nano formulated ATP could be used for calorie restriction conditions where ATP can be supplied as an extracellular source for bypassing oxidative phosphorylation, and we can circumvent the oxidant production during oxidative phosphorylation. The concept of avoiding oxidative stress by bypassing oxidative phosphorylation can open an avenue for healthy aging.
The selective hydrogen production from methanol on the graphitic-like gallium nitride (GaN) and carbon doped gallium nitride (C–GaN) nanosheets has been challenged using the density functional theory (DFT) method. In this work, we report that GaN and C-doped GaN can catalyze the direct producing hydrogen (H2) of methanol (CH3OH) through Langmuir adsorption. The changes of charge density have shown a more important charge transfer for C-doped GaN compared to GaN which act both as the electron acceptor while CH3OH molecules in water act as the stronger electron donors through adsorption on the GaN and C-doped GaN surfaces. The adsorption of CH3OH molecules on the GaN and C-doped GaN surfaces represented spin polarization in the GaN and C-doped GaN which can be employed as thee magnetic sensors for running the reaction of H2 producing. The partial electron density states based on “PDOS” graphs have explained that the CH3OH states in both of GaN and C-doped GaN nanosheets, respectively, have more conduction bands between −5 eV to −10 eV. The simulated distribution functions of CH3O@GaN and CH3O@C–GaN complexes exhibits that the bond lengths of O–Ga in CH3O–GaN complex is 1.99 Å and O–C in CH3O–C–GaN complex is 1.43 Å. Besides, the plot for electric potential versus atomic charge has been shown around carbon doping of the GaN which presents the electron accepting characteristics of this element via the electron donor of oxygen atom of hydroxyl group in CH3OH with linear relation coefficient of R2 = 0.9948. GaN and C–GaN nanosheets seem to have enough efficiency for adsorption CH3OH molecules through charge transfer from oxygen to the gallium and carbon elements due to intra-atomic and interatomic interactions.
The pyridine ring is present in numerous significant plant compounds. It is used as a therapeutic to boost the solubility and bioavailability of less soluble chemicals since it is a polar and ionizable aromatic molecule. Chemical compounds derived from pyridine are highly sought-after in the pharmaceutical industry. An essential synthesis strategy in the search for novel medications is the fusion of the pyridine nucleus. Due to the compounds’ powerful therapeutic characteristics, medicinal chemists have long been fascinated by the chemistry of pyridine and its derivatives, which inspires them to look for and make novel compounds with biological utility. There are significant ramifications for medical chemistry in the adaptability of pyridine and its derivatives as reactants and starting materials for structural changes. Pesticides and agricultural chemicals that heavily rely on pyridine derivatives include insecticides, fungicides, and herbicides; However, this page focuses on their medical applications. Pyridine derivatives are frequently used in the textile industry to create dyes. We present the most recent findings from 2010 onward, highlighting the growing significance of pyridine scaffolds in medicinal chemistry and the development of new drugs. Even though there are a lot of studies on pyridine derivatives, this chapter only has compounds with a clear pharmacophore.
Imidazole and phenyl rings are fused at positions 4 and 5 to form the benzimidazole structure. The benzimidazole mono- and disubstituted derivatives are extremely intriguing heterocyclic chemical compounds. They can be synthesized using a straightforward condensation method between o-phenylenediamine and a carbonyl compound under various conditions as well as a nucleophilic substitution reaction. The catalytical effects of benzimidazole derivatives, which include oxidation of olefins, oxidation of alcohol, etc, play a significant role in the catalysis. This review describes various synthetic routes for synthesizing functionalized benzimidazole derivatives and catalytic application of benzimidazole Schiff base metal complexes and benzimidazole amide.
The main deliberation of this review paper is on metallic catalysts, including Cu-based catalysts, with distinct formulations and compositions, utilized for steam reforming of methanol (SRM). The review critically examines the performance of these catalysts, considering the active components, supports, promoters, and their interactions. Additionally, the review identifies and elucidates the various kinds of reaction mechanisms and routes involved in SRM. This comprehensive analysis provides valuable insights into the progress of well-organized and effective catalysts for SRM. To achieve high yields of H2, it is crucial to conduct a fundamental study of the role of copper as a component in both mono and multimetallic systems, as well as the nature of support. These factors are essential to understand the catalytic mechanisms involved in the steam reforming of methanol and to develop effective strategies for optimizing hydrogen production. Therefore, a thorough investigation of copper-based catalysts and their interaction with the support material is essential for the development of highly efficient steam reforming processes.
This analysis of contemporary findings aims to enhance our understanding of lipoprotein biology within the lymphatic system and its relevance to human health and disease. It delves into the complex interrelationship between lipoproteins and the lymphatic system, encompassing their diverse classes and pivotal roles in the absorption and transport of drugs, vitamins, and xenobiotics. Lipoproteins consist of a hydrophobic core comprising non-polar lipids and a hydrophilic membrane composed of phospholipids, free cholesterol, and apolipoproteins. The lymphatic system collaborates with lipoproteins in the absorption and transport of dietary lipids. Simultaneously, it plays a vital role in the regulation of body fluid levels and acts as a formidable defense mechanism against infections. Lipoprotein classes encompass chylomicrons, chylomicron remnants, very low-density lipoproteins, intermediate density lipoproteins, low-density lipoproteins, high-density lipoproteins, and lipoprotein (a). Understanding the intricate relationship between lipoproteins and the lymphatic system holds immense implications for comprehending the underlying pathological processes of various diseases such as atherosclerosis, diabetes and obesity among others. By shedding light on the interplay between lipoproteins and the lymphatic system, this report underscores the significance of conducting research that contributes to the advancement of our knowledge in this field. Ultimately, such research paves the way for potential therapeutic interventions and novel strategies to address numerous disorders.