Early diseases diagnosis in body fluids (serum and saliva) using infrared spectroscopy

Andrei A. Bunaciu, Hassan Y. Aboul-Enein

Article ID: 2097
Vol 6, Issue 2, 2023

VIEWS - 488 (Abstract) 228 (PDF)

Abstract


Infrared spectroscopy it is becoming more and more useful in the field of biomedical research. Infrared spectroscopy has been used more and more to characterize biological matrixes, providing a simple way to obtain diagnostic and observational information from easily acquired samples. These tests are performed in order to monitor the changes, and in this way to characterize the biological matrix, with the aim of detecting the first signs that can diagnose a disease. Vibrational spectroscopy analysis of biological fluids has become more and more popular recently. Notably, the development of infrared spectroscopic screening of blood products, particularly blood serum and saliva, for illness diagnosis has attracted economic attention. This review examines some applications of the infrared spectroscopy method that was employed to examine human serum in order to detect disease at an early stage, published between 2017 and 2022.

Keywords


FT-IR analysis; biomedical analysis; human; serum; saliva; early disease diagnosis applications

Full Text:

PDF


References


1. Byrne HJ, Baranska M, Puppels GJ, et al. Spectropathology for the next generation: quo vadis? The Analyst 2015; 140(7): 2066–2073. doi: 10.1039/ c4an02036g

2. Baker MJ, Byrne HJ, Chalmers J, et al. Clinical applications of infrared and Raman spectroscopy: State of play and future challenges. The Analyst 2018; 143(8): 1735–1757. doi: 10.1039/c7an01871a

3. Bunaciu AA, Aboul-Enein HY, Hoang VD. Body fluids analysis. In: Vibrational Spectroscopy Application in Biomedical, Pharmaceutical and Food Sciences. Elsevier; 2020. pp. 39–70.

4. Shahid AH, Singh MP. Computational intelligence techniques for medical diagnosis and prognosis: Problems and current developments. Biocybernetic and Biomedicale Engineering 2019; 39(3): 638–672. doi: 10.1016/j.bbe.2019.05.010

5. Song CL, Kazarian SG. Micro ATR-FTIR spectroscopic imaging of colon biopsies with a large area Ge crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 228: 117695. doi: 10.1016/j.saa.2019.117695

6. Willetts K, Farr L, Foreman L. From stellar composition to cancer diagnostics. Contemporary physics 2019; 60(3): 221–225. doi: 10.1080/00107514.2019.1645492

7. Su KY, Lee WL. Fourier transform infrared spectroscopy as a cancer screening and diagnostic tool: A review and prospects. Cancers 2020; 12(1): 115. doi: 10.3390/cancers12010115

8. Khulla N, Salmann A, Javaria Q. ATR-FTIR spectroscopy as the future of diagnostics: A systematic review of the approach using bio-fluids. Applied Spectroscopy Reviews 2020; 56(2): 85–97. doi: 10.1080/05704928.2020.1738453

9. Sparrow RL, Greening DW, Simpson RJ. A protocol for the preparation of cryoprecipitate and cryodepleted plasma. In: Simpson RJ, Greening DW (editors). Serum/Plasma Proteomics—Methods and Protocols. Springer Science+Business Media; 2011. pp. 259–265.

10. Anderson NL, Anderson NG. The human plasma proteome: History, character, and diagnostic prospects. Molecular Cellular Proteomics 2002; 1(11): 845–867. doi: 10.1074/mcp.R200007-MCP200

11. Fu Y, Lin W, Yang Y, et al. Analysis of diverse factors influencing the health status as well as medical and health service utilization in the floating elderly of China. BMC Health Services Research 2021; 21(1): 438. doi: 10.1186/s12913-021-06410-7

12. Amos W, Harwood J. Factors affecting levels of genetic diversity in natural populations. Philosophical Transactions of the Royal Society B 1998; 353: 177–186. doi: 10.1098/rstb.1998.0200

13. Cameron JM, Bruno C, Parachalil DR, et al. Vibrational spectroscopic analysis and quantification of proteins in human blood plasma and serum. In: Ozaki Y, Baranska M, Lednev I, et al. (editors). Vibrational Spectroscopy in Protein Research, 1st ed. Academic Press; 2020. pp. 269–314.

14. Schrader M, Schulz-Knappe P. Peptidomics technologies for human bodyfluids. Trends in Biotechnology 2001; 19: S55–S60. doi: 10.1016/S0167-7799(01)01800-5

15. Cameron JM, Butler HJ, Palmer DS, et al. Biofluid spectroscopic disease diagnostics: A review on the processes and spectral impact of drying. Journal of Biophotonics 2018; 11(4): e201700299. doi: 10.1002/jbio.201700299

16. De Bruyne S, Speeckaert MM, Delanghe JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Critical reviews in clinical laboratory sciences 2018; 55(1): 1–20. doi: 10.1080/10408363.2017.1414142

17. Leal LB, Nogueira MS, Canevari RA, et al. Vibration spectroscopy and body biofluids: Literature review for clinical applications. Photodiagnosis and Photodynamic Therapy 2018; 24: 237–244. doi: 10.1016/j.pdpdt.2018.09.008

18. Paraskevaidi M, Martin-Hirsch PL, Martin FL. ATR-FTIR spectroscopy tools for medical diagnosis and disease investigation. In: Kumar CSSR (editor). Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer Berlin, Heidelberg; 2018. pp. 163–211. doi: 10.1007/978-3-662-56333-5_4

19. Rohman A, Windarsih A, Lukitaningsih E, et al. The use of FTIR and Raman spectroscopy in combination with chemometrics for analysis of biomolecules in biomedical fluids: A review. Biomedical Spectroscopy and Imaging 2019; 8(4): 55–71. doi: 10.3233/BSI-200189

20. Cameron JM, Butler HL, Anderson DJ, et al. Exploring pre-analytical factors for the optimisation of serum diagnostics: Progressing the clinical utility of ATR-FTIR spectroscopy. Vibrational Spectroscopy 2020; 109: 103092. doi: 10.1016/j.vibspec.2020.103092

21. Naseer K, Ali S, Qazi J. ATR-FTIR spectroscopy as the future of diagnostics: A systematic review of the approach using bio-fluids. Applied Spectroscopy Reviews 2021; 56(2): 85–97. doi: 10.1080/05704928.2020.1738453

22. National Academies of Sciences and Medicine E. Improving Diagnosis in Health Care. National Academies Press; 2016.

23. Li YS, Church JS. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis 2014; 22(1): 29–48. doi: 10.1016/j.jfda.2014.01.003

24. Finlayson D, Rinaldi C, Baker MJ. Is infrared spectroscopy ready for the clinic? Analytical Chemistry 2019; 91: 12117–12128. doi: 10.1021/acs.analchem.9b02280

25. Shaw RA, Mantsch HH. Infrared spectroscopy in clinical and diagnostic analysis. Encyclopedia of Analytical Chemistry 2006; 1–20. doi: 10.1002/9780470027318.a0106

26. Spalding K, Bonnier F, Bruno C, et al. Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance—Fourier transform infrared (ATR-FTIR) spectroscopy. Vibrational Spectroscopy 2018; 99: 50–58. doi: 10.1016/j.vibspec.2018.08.019

27. Xu Y, Muhamadali H, Sayqal A, et al. Partial least squares with structured output for modelling the metabolomics data obtained from complex experimental designs: A study into the Y-block coding. Metabolites 2016; 6(4): 38. doi: 10.3390/metabo6040038

28. Walther BA, Moore JL. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 2005; 28: 815–829. doi: 10.1111/j.2005.0906-7590.04112.x

29. Davies AMC. What IS and what is NOT chemometrics. Spectroscopy Europe 2012; 24(4): 33–36.

30. Bunaciu AA, Aboul-Enein HY, Hoang VD. Vibrational Spectroscopy Application in Biomedical, Pharmaceutical and Food Sciences. Elsevier; pp. 227–247.

31. Bunaciu AA, Fleschin Ş, Aboul-Enein HY. Biomedical investigations using fourier transform-infrared microspectroscopy. Critical Reviews in Analytical Chemistry 2014; 44(3): 270–276. doi: 10.1080/10408347.2013.829389

32. Bunaciu AA, Fleschin Ş, Hoang VD, et al. Vibrational spectroscopy in body fluids analysis. Critical Reviews in Analytical Chemistry 2017; 47(1): 67–75. doi: 10.1080/10408347.2016.1209104

33. Chaudhary I, Jackson N, Denning D, et al. Contributions of vibrational spectroscopy to virology: A review. Clinical Spectroscopy 2022; 4: 100022. doi: 10.1016/j.clispe.2022.100022

34. Rumaling MI, Chee FP, Bade A, et al. Methods of optical spectroscopy in detection of virus in infected samples: A review. Heliyon 2022; 8: e10472. doi: 10.1016/j.heliyon.2022.e10472

35. Santos MCD, Morais CLM, Lima KMG, et al. Vibrational spectroscopy in protein research toward virus identification: Challenges, new research, and future perspectives. In: Ozaki Y, Baranska M, Lednev I, et al. (editors). Vibrational Spectroscopy in Protein Research, 1st ed. Elsevier Academic Press; 2020. pp. 315–335.

36. World Health Organization, Coronavirus (COVID-19), Dashboard. Available online: https://covid19.who.int/.info (accessed on 14 July 2023).

37. Bunaciu AA, Aboul-Enein HY. Determination of COVID-19 viruses in Saliva using fourier transform infrared spectroscopy. Chinese Journal of Analytical Chemistry 2022; 50(12): 100178. doi: 10.1016/j.cjac.2022.100178

38. de Carvalho LFCS, Nogueira MS. Optical techniques for fast screening—Towards prevention of the coronavirus COVID-19 outbreak. Photodiagnosis and Photodynamic Therapy 2020; 30: 101765. doi: 10.1016/j.pdpdt.2020.101765

39. Khan RS, Rehman HU, Rehman IU. Saliva for the diagnosis of COVID-19. Applied Spectroscopy Reviews 2020; 55: 805–809. doi: 10.1080/05704928.2020.1809442

40. Barauna VG, Singh MN, Barbosa LL, et al. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: High sensitivity and specificity. Analytical Chemistry 2021; 93(5): 2950–2958. doi: 10.1021/acs.analchem.0c04608

41. Stanaway JD, Flaxman AD, Naghavi M, et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. The Lancet 2016; 388(10049): 1081–1088. doi: 10.1016/S0140-6736(16)30579-7

42. Roy S, Perez-Guaita D, Bowden S, et al. Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clinical Spectroscopy 2019; 1: 100001. doi: 10.1016/j.clispe.2020.100001

43. Marques V, Cunha B, Couto A, et al. Characterization of gastric cells infection by diverse helicobacter pylori strains through fourier-transform infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 210: 193–202. doi: 10.1016/j.saa.2018.11.001

44. Woof JM, Kerr MA. The function of immunoglobulin A in immunity. Journal of Pathology 2006; 208(2): 270–282. doi: 10.1002/path.1877

45. Kerr MA. Function of immunoglobulin A in immunity. Gut 2000; 47(6): 751–752. doi: 10.1136/gut.47.6.751

46. Elsohaby I, McClure JT, Riley CB, et al. Centrifugal ultrafiltration of human serum for improving immunoglobulin A quantification using attenuated total reflectance infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 2018; 150: 413–419. doi: 10.1016/j.jpba.2017.12.031

47. Li Y, Qiang XM, Luo L, et al. Multitarget drug design strategy against Alzheimer’s disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorganic & Medicinal Chemistry 2017; 25(2): 714–726. doi: 10.1016/j.bmc.2016.11.048

48. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease. Neurology 1984; 34(7): 939–944. doi: 10.1212/WNL.34.7.939

49. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers & Dementia 2011; 7(3): 263–269. doi: 10.1016/j.jalz.2011.03.005

50. Hrubešova K, Fousková M, Habartová L, et al. Search for biomarkers of Alzheimer’s disease: Recent insights, current challenges and future prospects. Clinical Biochemistry 2019; 72: 39–51. doi: 10.1016/j.clinbiochem.2019.04.002

51. Yang CM, Guang PW, Li L, et al. Early rapid diagnosis of Alzheimer’s disease based on fusion of near- and mid-infrared spectral features combined with PLS-DA. Optik 2021; 241: 166485. doi: 10.1016/j.ijleo.2021.166485

52. Huck CW, Ozaki Y, Huck-Pezzei VA. Critical review upon the role and potential of fluorescence and near-infrared imaging and absorption spectroscopy in cancer related cells, serum, saliva, urine and tissue analysis. Current Medicinal Chemistry 2016; 23(27): 3052–3077. doi: 10.2174/ 0929867323666160607110507

53. Sakudo A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clinica Chimica Acta 2016; 455: 181–188. doi: 10.1016/j.cca.2016.02.009

54. Bruyne SD, Speeckaert MM, Delanghe JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Critical Reviews in Clinical Laboratory Sciences 2018; 55(1): 1–20. doi: 10.1080/10408363.2017.1414142

55. Lopez-Lorente AI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: Potential and challenges. Analytical and Bioanalytical Chemistry 2016; 408: 2875–2889. doi: 10.1007/s00216-016-9375-5

56. Bunaciu AA, Fleschin S, Hoang VD, et al. Vibrational spectroscopy in body fluids analysis. Critical Review in Analytical Chemistry 2017; 47(1): 67–75. doi: 10.1080/10408347.2016.1209104

57. Wang X, Wu Q, Li C, et al. A study of Parkinson’s disease patients’ serum using FTIR spectroscopy. Infrared Physics and Technology 2020; 106: 103279. doi: 10.1016/j.infrared.2020.103279

58. Le Corvec M, Jezequel C, Monbet V, et al. Mid-infrared spectroscopy of serum, a promising non-invasive method to assess prognosis in patients with ascites and cirrhosis. PLoS One 2017; 12(10): e0185997. doi: 10.1371/journal.pone.0185997

59. Malinchoc M, Kamath M.D PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000; 31(4): 864–871. doi: 10.1053/he.2000.5852

60. Child CG, Turcotte JG. Surgery and portal hypertension. In: Child CG (editor). The liver and portal hypertension. Philadelphia: Saunders; 1964. pp. 50–64.

61. Pugh RNH, Murray-Lyon IM, Dawson JL, et al. Transection of the oesophagus for bleeding oesophageal varices. British Journal of Surgery 1973; 60(8): 646–649. doi: 10.1002/bjs.1800600817

62. Xiang XM, Liu KZ, Man A, et al. Periodontitis-specific molecular signatures in gingival crevicular fluid. Journal of Periodontal Research 2010; 45(3): 345–352. doi: 10.1111/j.1600-0765.2009.01243.x

63. Bonnier F, Brachet G, Duong R, et al. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy. Journal of Biophotonics 2016; 9(10): 1085–1097. doi: 10.1002/jbio.201600015

64. Seredin P, Goloshchapov D, Ippolitov Y, et al. Spectroscopic signature of the pathological processes of carious dentine based on FTIR investigations of the oral biological fluids. Biomedical Optics Express 2019; 10(8): 4050–4058. doi: 10.1364/BOE.10.004050

65. Portaccio M, d’Apuzzo F, Perillo L, et al. Infrared microspectroscopy characterization of gingival crevicular fluid during orthodontric treatment. Journal of Molecular Structure 2019; 1176: 847–854. doi: 10.1016/j.molstruc.2018.09.013

66. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2021; 71(3): 209–249. doi: 10.3322/caac.21660

67. Bel’skaya LV. Use of IR spectroscopy in cancer diagnosis—A review. Journal of Applied Spectroscopy 2019; 86(2): 187–205. doi: 10.1007/s10812-019-00800-w

68. Kumari A, Kaur J, Bhattacharyya S. Application of fourier transform-infrared spectroscopy as a tool for early cancer detection. American Journal of Biomedical Sciences 2018; 10(3): 139–148. doi: 10.5099/aj180300139

69. Sala A, Anderson DJ, Brennan PM, et al. Biofluid diagnostics by FTIR spectroscopy: A platform technology for cancer detection. Cancer Letters 2020; 477: 122–130. doi: 10.1016/j.canlet.2020.02.020

70. Stewart BW, Wild CP. World Cancer Report 2014. WHO Press; 2019.

71. Ghimire H, Garlapati C, Janssen EAM, et al. Protein conformational changes in breast cancer sera using infrared spectroscopic analysis. Cancers 2020; 12(7): 1708. doi: 10.3390/cancers12071708

72. Ollesch J, Drees SL, Heise HM, et al. FTIR spectroscopy of biofluids revisited: An automated approach to spectral biomarker identification. Analyst 2013; 138(14): 4092–4102. doi: 10.1039/c3an00337j

73. Elmi F, Movaghar AF, Elmi MM, et al. Application of FT-IR spectroscopy on breast cancer serum analysis. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy 2017; 187: 87–91. doi: 10.1016/j.saa.2017.06.021

74. Lu YF, Zhao Y, Zhu YK, et al. In situ research and diagnosis of breast cancer by using HOF-ATR-FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 235: 118178. doi: 10.1016/j.saa.2020.118178




DOI: https://doi.org/10.24294/ace.v6i2.2097

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.