Development of nanocomposite membranes for removal of pharmaceutically active compounds in water: A review

Adewale Adewuyi, Woei Jye Lau

Article ID: 2066
Vol 6, Issue 2, 2023

VIEWS - 904 (Abstract) 152 (PDF)

Abstract


The call for greenhouse gas emission reduction as the result of global warming has been the main cause of the more rigorous emission legislation in the road transportation sector. In response to such requirements, car makers opt for the ‘down-sizing’ trend for engine displacement with the aim to increase brake thermal efficiency by increasing engine load (mean effective pressure). However, this leads to higher potential of engine knocking and elevated NOx emissions. This study investigates the effects of combustion phasing induced by water injection via the intake manifold of a naturally aspirated GDI engine at MBT ignition timing fuelled with E20. Water up to 30% of fuel mass is portinjected during high engine load and maximum NOx reduction of up to 82% could be achieved as the result of lower RoHR caused by vaporisation of water. Water injection prolonged the ignition delay and combustion duration (CA1090) without deterioration of combustion stability (%COV of IMEP). The optimisation of ignition timing based on MBT can improve CO emission compared to EGR systems. The proposed study demonstrates the possibility to achieve low nitrogen emissions without the need of precious metal-based catalysts.

Keywords


nanocomposite membrane; water; PhACs; nanomaterials

Full Text:

PDF


References


1. Sim WJ, Lee JW, Lee ES, et al. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 2011; 82(2): 179–186. doi: 10.1016/j.chemosphere.2010.10.026

2. Molnar E, Maasz G, Pirger Z. Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. Environmental Science and Pollution Research 2021; 28: 59233–59243. doi: 10.1007/s11356-020-09747-4

3. Adewuyi A, Ogunkunle OA, Oderinde RA. Zirconium ferrite incorporated zeolitic imidazolate framework-8: A suitable photocatalyst for degradation of dopamine and sulfamethoxazole in aqueous solution. RSC Advances 2023; 13(14): 9563–9575. doi: 10.1039/D3RA01055D

4. Olalekan OA, Campbell AJ, Adewuyi A, et al. Synthesis and application of ZnO-MgO-NiO@ Stearicamide mixed oxide for removal of ciprofloxacin and ampicillin from aqueous solution. Results in Chemistry 2022; 4: 100457. doi: 10.1016/j.rechem.2022.100457

5. Hassan Mohamed NA, Shamma RN, Elagroudy S, Adewuyi A. Visible light-driven photocatalytic degradation of ciprofloxacin, ampicillin and erythromycin by zinc ferrite immobilized on chitosan. Resources 2022; 11(10): 81. doi: 10.3390/resources11100081

6. Adewuyi A, Oderinde RA. Synthesis of neodymium ferrite incorporated graphitic carbonitride (NdFe2O4@g-C3N4) and its application in the photodegradation of ciprofloxacin and ampicillin in a water system. RSC Advances 2023; 13(8): 5405–5418. doi: 10.1039/D2RA08070B

7. Kosek K, Luczkiewicz A, Fudala-Książek S, et al. Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs)-Examples and challenges based on selected EU countries. Environmental Science & Policy 2020; 112: 213–226. doi: 10.1016/j.envsci.2020.06.011

8. Wheeler DL, Barrett T, Benson DA, et al. Database resources of the national center for biotechnology information. Nucleic Acids Research 2018; 46(D1): D8–D13. doi: /10.1093/nar/gkl1031

9. Behera SK, Kim HW, Oh JE, et al. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the Total Environment 2011; 409(20): 4351–4360. doi: 10.1016/j.scitotenv.2011.07.015

10. Tran NH, Reinhard M, Gin KYH. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—A review. Water Research 2018; 133: 182–207. doi: 10.1016/j.watres.2017.12.029

11. Tran NH, Gin KYH. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Science of the Total Environment 2017; 599: 1503–1516. doi: 10.1016/j.scitotenv.2017.05.097

12. Papageorgiou M, Kosma C, Lambropoulou D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of the Total Environment 2016; 543: 547–569. doi: 10.1016/j.scitotenv.2015.11.047

13. Santos LH, Araújo AN, Fachini A, et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials 2010; 175(1–3): 45–95. doi: 10.1016/j.jhazmat.2009.10.100

14. Simazaki D, Kubota R, Suzuki T, et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Research 2015; 76: 187–200. doi: 10.1016/j.watres.2015.02.059

15. Batt AL, Aga DS. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Analytical Chemistry 2005; 77(9): 2940–2947. doi: 10.1021/ac048512+

16. Yidong G, Bo W, Yongxia GAO, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China: A review. Pedosphere 2017; 27(1): 42–51. doi: 10.1016/S1002-0160(17)60295-9

17. Cai Z, Dwivedi AD, Lee WN, et al. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environmental Science: Nano 2018; 5(1): 27–47. doi: 10.1039/C7EN00644F

18. Yan S, Yao B, Lian L, et al. Development of fluorescence surrogates to predict the photochemical transformation of pharmaceuticals in wastewater effluents. Environmental Science & Technology 2017; 51(5): 2738–2747. doi: 10.1021/acs.est.6b05251

19. Zhao F, Chen L, Yang L, et al. Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale. Environmental Pollution 2020; 260: 114112. doi: 10.1016/j.envpol.2020.114112

20. Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018; 23(4): 795. doi: 10.3390/molecules23040795

21. Akpan SN, Odeniyi OA, Adebowale O, et al. Antibiotic resistance profile of Gram-negative bacteria isolated from Lafenwa abattoir effluent and its receiving water (Ogun River) in Abeokuta, Ogun state, Nigeria. Onderstepoort Journal of Veterinary Research 2020; 87(1): 1–6. doi: 10.4102/ojvr.v87i1.1854

22. Stackelberg PE, Furlong ET, Meyer MT, et al. Persistence of pharmaceutical compounds and other organic wastewater contaminants na conventional drinking-water treatment plant. Science of the Total Environment 2004; 329(1–3): 99–113. doi: 10.1016/j.scitotenv.2004.03.015

23. Atlı Şekeroğlu Z, Kefelioğlu H, Kontaş Yedier S, et al. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation. Toxicology Mechanisms and Methods 2017; 27(3): 201–206. doi: 10.1080/15376516.2016.1273430

24. Kardoost M, Hajizadeh-Saffar E, Ghorbanian MT, et al. Genotoxicity assessment of antiepileptic drugs (AEDs) in human embryonic stem cells. Epilepsy Research 2019; 158: 106232. doi: 10.1016/j.eplepsyres.2019.106232

25. Peng Y, Hall S, Gautam L. Drugs of abuse in drinking water—A review of current detection methods, occurrence, elimination and health risks. TrAC Trends in Analytical Chemistry 2016; 85: 232–240. doi: 10.1016/j.trac.2016.09.011

26. Baken KA, Sjerps RM, Schriks M, van Wezel AP. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern. Environment International 2018; 118: 293–303. doi: 10.1016/j.envint.2018.05.006

27. Dos Santos CEM, Nardocci AC. Prioritization of pharmaceuticals in drinking water exposure based on toxicity and environmental fate assessment by in silico tools: An integrated and transparent ranking. Computational Toxicology 2019; 9: 12–21. doi: 10.1016/j.comtox.2018.10.005

28. Yang L, He JT, Su SH, et al. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. Environmental Science and Pollution Research 2017; 24: 15838–15851. doi: 10.1007/s11356-017-8999-0

29. Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science & Technology 2006; 40(1): 357–363. doi: 10.1021/es050991m

30. Wang Z, Gao S, Dai Q, et al. Occurrence and risk assessment of psychoactive substances in tap water from China. Environmental Pollution 2020; 261: 114163. doi: 10.1016/j.envpol.2020.114163

31. Bhatia V, Malekshoar G, Dhir A, Ray AK. Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite. Journal of Photochemistry and Photobiology A: Chemistry 2017; 332: 182–187. doi: 10.1016/j.jphotochem.2016.08.029

32. Haro NK, Del Vecchio P, Marcilio NR, Féris LA. Removal of atenolol by adsorption–Study of kinetics and equilibrium. Journal of Cleaner Production 2017; 154: 214–219. doi: 10.1016/j.jclepro.2017.03.217

33. Tan C, Gao N, Fu D, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Separation and Purification Technology 2017; 175: 47–57. doi: 10.1016/j.seppur.2016.11.016

34. Illés E, Szabó E, Takács E, et al. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity. Science of the Total Environment 2014; 472: 178–184. doi: 10.1016/j.scitotenv.2013.10.119

35. Ganzenko O, Oturan N, Huguenot D, et al. Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: Effects of operating parameters on removal efficiency. Separation and Purification Technology 2015; 156: 987–995. doi: 10.1016/j.seppur.2015.09.055

36. Ali I, Al-Othman ZA, Alwarthan A. Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. Journal of Molecular Liquids 2016; 219: 858–864. doi: 10.1016/j.molliq.2016.04.031

37. Xia D, Lo IMC. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Research 2016; 100: 393–404. doi: 10.1016/j.watres.2016.05.026

38. Pérez T, Sirés I, Brillas E, Nava JL. Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate medium. Electrochimica Acta 2017; 228: 45–56. doi: 10.1016/j.electacta.2017.01.047

39. Soares SF, Simoes TR, Antonio M, et al. Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. Chemical Engineering Journal 2016; 302: 560–569. doi: 10.1016/j.cej.2016.05.079

40. Li S, Zhang X, Huang Y. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. Journal of Hazardous Materials 2017; 321: 711–719. doi: 10.1016/j.jhazmat.2016.09.065

41. Benowitz NL, Jacob III P, Mayan H, Denaro C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clinical Pharmacology & Therapeutics 1995; 58(6): 684–691. doi: 10.1016/0009-9236(95)90025-X

42. Nasuhoglu D, Yargeau V, Berk D. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax = 254 nm). Journal of Hazardous Materials 2011; 186(1): 67–75. doi: 10.1016/j.jhazmat.2010.10.080

43. Boyer EW. Management of opioid analgesic overdose. New England Journal of Medicine 2012; 367(2): 146–155. doi: 10.1056/NEJMra1202561

44. Hartmann J, Beyer R, Harm S. Effective removal of estrogens from drinking water and wastewater by adsorption technology. Environmental Processes 2014; 1: 87–94. doi: 10.1007/s40710-014-0005-y

45. Pessoa GP, de Souza NC, Vidal CB, et al. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of the Total Environment 2014; 490: 288–295. doi: 10.1016/j.scitotenv.2014.05.008

46. Taheran M, Brar SK, Verma M, et al. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Science of the Total Environment 2016; 547: 60–77. doi: 10.1016/j.scitotenv.2015.12.139

47. Lin YL, Chiou JH, Lee CH. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Journal of Hazardous Materials 2014; 277: 102–109. doi: 10.1016/j.jhazmat.2014.01.023

48. Azaïs A, Mendret J, Petit E, Brosillon S. Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration. Water Research 2016; 104: 156–167. doi: 10.1016/j.watres.2016.08.014

49. Fischer K, Grimm M, Meyers J, et al. Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. Journal of Membrane Science 2015; 478: 49–57. doi: 10.1016/j.memsci.2015.01.009

50. Dong L, Huang X, Wang Z, et al. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology 2016; 166: 230–239. doi: 10.1016/j.seppur.2016.04.043

51. Abdelmelek SB, Greaves J, Ishida KP, et al. Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. Environmental Science & Technology 2011; 45(8): 3665–3671. doi: 10.1021/es104287n

52. Huang M, Chen Y, Huang CH, et al. Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO2. Chemical Engineering Journal 2015; 279: 904–911. doi: 10.1016/j.cej.2015.05.078

53. Padhye LP, Yao H, Kung'u FT, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research 2014; 51: 266–276. doi: 10.1016/j.watres.2013.10.070

54. Kårelid V, Larsson G, Björlenius B. Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon. Journal of Environmental Management 2017; 193: 163–171. doi: 10.1016/j.jenvman.2017.01.078

55. Dodd MC, Kohler HPE, Von Gunten U. Oxidation of antibacterial compounds by ozone and hydroxyl radical: Elimination of biological activity during aqueous ozonation processes. Environmental Science & Technology 2009; 43(7): 2498–2504. doi: 10.1021/es8025424

56. Yang L, Hu C, Nie Y, Qu J. Surface acidity and reactivity of β-FeOOH/Al2O3 for pharmaceuticals degradation with ozone: In situ ATR-FTIR studies. Applied Catalysis B: Environmental 2010; 97(3–4): 340–346. doi: 10.1016/j.apcatb.2010.04.014

57. Issaka E, Amu-Darko JN, Yakubu S, et al. Advanced catalytic ozonation for degradation of pharmaceutical pollutants—A review. Chemosphere 2022; 289: 133208. doi: 10.1016/j.chemosphere.2021.133208

58. Patel M, Kumar R, Kishor K, et al. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews 2019; 119(6): 3510–3673. doi: 10.1021/acs.chemrev.8b00299

59. Zhang D, Gersberg RM, Ng WJ, Tan SK. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Environmental Pollution 2014; 184: 620–639. doi: 10.1016/j.envpol.2013.09.009

60. Li Y, Zhu G, Ng WJ, Tan SK. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment 2014; 468: 908–932. doi: 10.1016/j.scitotenv.2013.09.018

61. Camacho-Muñoz D, Martín J, Santos JL, et al. Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds. Water, Air, & Soil Pollution 2012; 223: 2611–2621. doi: 10.1007/s11270-011-1053-9

62. Ávila C, Reyes C, Bayona JM, García J. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox. Water Research 2013; 47(1): 315–325. doi: 10.1016/j.watres.2012.10.005

63. Obotey Ezugbe E, Rathilal S. Membrane technologies in wastewater treatment: A review. Membranes 2020; 10(5): 89. doi: 10.3390/membranes10050089

64. Košutić K, Dolar D, Ašperger D, Kunst B. Removal of antibiotics from a model wastewater by RO/NF membranes. Separation and Purification Technology 2007; 53(3): 244–249. doi: 10.1016/j.seppur.2006.07.015

65. Shi Y, Wang X, Feng C, Zhong S. Technologies for the removal of antibiotics in the environment: A review. International Journal of Electrochemical Science 2022; 17(220768): 2. doi: 10.20964/2022.07.74

66. Singh R, Hankins N. Emerging membrane technology for sustainable water treatment. Elsevier; 2016.

67. Brillas E, Sirés I. Electrochemical remediation technologies for waters contaminated by pharmaceutical residues. In: Environmental Chemistry for a Sustainable World: Volume 2: Remediation of Air and Water Pollution. Springer; 2012. pp. 297–346.

68. Nain A, Sangili A, Hu SR, et al. Recent progress in nanomaterial functionalized membranes for removal of pollutants. Iscience 2022; 104616. doi: 10.1016/j.isci.2022.104616

69. Molelekwa GF, Mukhola MS, Van der Bruggen B, Luis P. Preliminary studies on membrane filtration for the production of potable water: A case of Tshaanda rural village in South Africa. PLoS One 2014; 9(8): e105057. doi: 10.1371/journal.pone.0105057

70. Abdel-Shafy HI, Abdel-Shafy SH. Membrane technology for water and wastewater management and application in Egypt. Egyptian Journal of Chemistry 2017; 60(3): 347–360. doi: 10.21608/EJCHEM.2017.3480

71. Yu H, Li X, Chang H, et al. Performance of hollow fiber ultrafiltration membrane in a full-scale drinking water treatment plant in China: A systematic evaluation during 7-year operation. Journal of Membrane Science 2020; 613: 118469. doi: 10.1016/j.memsci.2020.118469

72. Xia S, Liu Y, Li X, Yao J. Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption. Journal of Environmental Sciences 2007; 19(5): 536–539. doi: 10.1016/S1001-0742(07)60089-8

73. Sartor M, Schlichter B, Gatjal H, Mavrov V. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in Thailand. Desalination 2008; 222(1–3): 528–540. doi: 10.1016/j.desal.2007.03.013

74. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z. Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). Journal of Epidemiology and Global Health 2015; 5(4): 297–310. doi: 10.1016/j.jegh.2015.04.003

75. Sarkar B, Venkateshwarlu N, Rao RN, et al. Potable water production from pesticide contaminated surface water-A membrane based approach. Desalination 2007; 204(1–3): 368–373. doi: 10.1016/j.desal.2006.02.041

76. Cooray T, Wei Y, Zhang J, et al. Drinking-water supply for CKDu affected areas of Sri Lanka, using nanofiltration membrane technology: From laboratory to practice. Water 2019; 11(12): 2512. doi: 10.3390/w11122512

77. Kaya C, Sert G, Kabay N, et al. Pre-treatment with nanofiltration (NF) in seawater desalination-Preliminary integrated membrane tests in Urla, Turkey. Desalination 2015; 369: 10–17. doi: 10.1016/j.desal.2015.04.029

78. Brião VB, Magoga J, Hemkemeier M, et al. Reverse osmosis for desalination of water from the Guarani Aquifer System to produce drinking water in southern Brazil. Desalination 2014; 344: 402–411. doi: 10.1016/j.desal.2014.04.008

79. Van der Graaf J, Kramer JF, Pluim J, et al. Experiments on membrane filtration of effluent at wastewater treatment plants in the Netherlands. Water Science and Technology 1999; 39(5): 129–136. doi: 10.1016/S0273-1223(99)00094-3

80. Marrot B, Barrios‐Martinez A, Moulin P, Roche N. Industrial wastewater treatment in a membrane bioreactor: A review. Environmental Progress 2004; 23(1): 59–68. doi: 10.1002/ep.10001

81. Nghiem LD, Elters C, Simon A, et al. Coal seam gas produced water treatment by ultrafiltration, reverse osmosis and multi-effect distillation: A pilot study. Separation and Purification Technology 2015; 146: 94–100. doi: 10.1016/j.seppur.2015.03.022

82. Rezakazemi M, Khajeh A, Mesbah M. Membrane filtration of wastewater from gas and oil production. Environmental Chemistry Letters 2018; 16: 367–388. doi: 10.1007/s10311-017-0693-4

83. Boleda MR, Galceran MT, Ventura F. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environmental Pollution 2011; 159(6): 1584–1591. doi: 10.1016/j.envpol.2011.02.051

84. Sahar E, David I, Gelman Y, et al. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011; 273(1): 142–147. doi: 10.1016/j.desal.2010.11.004

85. Wang Y, Wang X, Li M, et al. Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. International Journal of Environmental Research and Public Health 2018; 15(2): 269. doi: 10.3390/ijerph15020269

86. Couto CF, Lange LC, Amaral MCS. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. Journal of Water Process Engineering 2018; 26: 156–175. doi: 10.1016/j.jwpe.2018.10.010

87. Vergili I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. Journal of Environmental Management 2013; 127: 177–187. doi: 10.1016/j.jenvman.2013.04.036

88. Kong F, Yang H, Wang X, Xie YF. Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration. Journal of Membrane Science 2016; 498: 57–66. doi: 10.1016/j.memsci.2015.09.062

89. Kimura K, Toshima S, Amy G, Watanabe Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. Journal of Membrane Science 2004; 245(1–2): 71–78. doi: 10.1016/j.memsci.2004.07.018

90. Kimura K, Amy G, Drewes JE, et al. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science 2003; 227(1–2): 113–121. doi: 10.1016/j.memsci.2003.09.005

91. Alfonso-Muniozguren P, Serna-Galvis EA, Bussemaker M, et al. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrasonics Sonochemistry 2021; 76: 105656. doi: 10.1016/j.ultsonch.2021.105656

92. Besha AT, Gebreyohannes AY, Tufa RA, et al. Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering 2017; 5(3): 2395–2414. doi: 10.1016/j.jece.2017.04.027

93. Tran NH, Chen H, Reinhard M, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research 2016; 104: 461–472. doi: 10.1016/j.watres.2016.08.040

94. Kruglova A, Kråkström M, Riska M, et al. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions. Bioresource Technology 2016; 214: 81–88. doi: 10.1016/j.biortech.2016.04.037

95. Wang L, Albasi C, Faucet-Marquis V, et al. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Research 2009; 43(17): 4115–4122. doi: 10.1016/j.watres.2009.06.007

96. Yang Z, Sun PF, Li X, et al. A critical review on thin-film nanocomposite membranes with interlayered structure: Mechanisms, recent developments, and environmental applications. Environmental Science & Technology 2020; 54(24): 15563–15583. doi: 10.1021/acs.est.0c05377

97. Wang Z, Wang Z, Lin S, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications 2018; 9(1): 2004. doi: 10.1038/s41467-018-04467-3

98. Khdary NH, Gassim AE, Howard AG. Scavenging of benzodiazepine drugs from water using dual-functionalized silica nanoparticles. Analytical Methods 2012; 4(9): 2900–2907. doi: 10.1039/c2ay25297j

99. Karki S, Ingole PG. Graphene-based thin film nanocomposite membranes for separation and purification. In: Comprehensive Analytical Chemistry. Elsevier; 2020. pp. 73–97.

100. Maximous N, Nakhla G, Wong K, Wan W. Optimization of Al2O3/PES membranes for wastewater filtration. Separation and Purification Technology 2010; 73(2): 294–301. doi: 10.1016/j.seppur.2010.04.016

101. Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EM. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 2010; 261(3): 255–263. doi: 10.1016/j.desal.2010.06.008

102. Hossain MF. Sustainable Development for Mass Urbanization. Elsevier; 2019.

103. Pendergast MM, Hoek EM. A review of water treatment membrane nanotechnologies. Energy & Environmental Science 2011; 4(6): 1946–1971. doi: 10.1039/c0ee00541j

104. Ebert K, Fritsch D, Koll J, Tjahjawiguna C. Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. Journal of Membrane Science 2004; 233(1–2): 71–78. doi: 10.1016/j.memsci.2003.12.012

105. Choi H, Stathatos E, Dionysiou DD. Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B: Environmental 2006; 63(1–2): 60–67. doi: 10.1016/j.apcatb.2005.09.012

106. Ikreedeegh RR, Tahir M. A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. Journal of CO2 Utilization 2021; 43: 101381. doi: 10.1016/j.jcou.2020.101381

107. Younis SA, Kwon EE, Qasim M, et al. Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Progress in Energy and Combustion Science 2020; 81: 100870. doi: 10.1016/j.pecs.2020.100870

108. Mukherjee D, Van der Bruggen B, Mandal B. Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. Chemosphere 2022; 295: 133835. doi: 10.1016/j.chemosphere.2022.133835

109. Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chemical Reviews 2013; 113(10): 7728–7768. doi: 10.1021/cr400086v

110. Zhi M, Xiang C, Li J, et al. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013; 5(1): 72–88. doi: 10.1039/c2nr32040a

111. Perreault F, De Faria AF, Elimelech M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews 2015; 44(16): 5861–5896. doi: 10.1039/c5cs00021a

112. Wei H, Deng S, Huang Q, et al. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Research 2013; 47(12): 4139–4147. doi: 10.1016/j.watres.2012.11.062

113. Attia TMS, Hu XL. Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 2013; 93(9): 2076–2085. doi: 10.1016/j.chemosphere.2013.07.046

114. Chao Y, Zhu W, Wu X, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. Chemical Engineering Journal 243; 2014: 60–67. doi: 10.1016/j.cej.2013.12.048

115. Liu D, Lei W, Qin S, et al. Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. Physical Chemistry Chemical Physics 2016; 18(1): 84–88. doi: 10.1039/c5cp06399j

116. Golberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and nanosheets. ACS Nano 2010; 4(6): 2979–2993. doi: 10.1021/nn1006495

117. Fan X, Su Y, Zhao X, et al. Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. Journal of Membrane Science 2014; 464: 100–109. doi: 10.1016/j.memsci.2014.04.005

118. Wang L, Su Y, Zheng L, et al. Highly efficient antifouling ultrafiltration membranes incorporating zwitterionic poly ([3-(methacryloylamino) propyl]-dimethyl (3-sulfopropyl) ammonium hydroxide). Journal of Membrane Science 2009; 340(1–2): 164–170. doi: 10.1016/j.memsci.2009.05.027

119. Boricha AG, Murthy Z. Preparation of N, O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chemical Engineering Journal 2010; 157(2–3): 393–400. doi: 10.1016/j.cej.2009.11.025

120. Sun Q, Su Y, Ma X, et al. Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. Journal of Membrane Science 2006; 285(1–2): 299–305. doi: 10.1016/j.memsci.2006.08.035

121. Yu LY, Xu ZL, Shen HM, Yang H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. Journal of Membrane Science 2009; 337(1–2): 257–265. doi: 10.1016/j.memsci.2009.03.054

122. Luo M, Tang W, Zhao J, Pu C. Hydrophilic modification of poly (ether sulfone) used TiO2 nanoparticles by a sol-gel process. Journal of Materials Processing Technology 2006; 172(3): 431–436. doi: 10.1016/j.jmatprotec.2005.11.004

123. Yuan H, Ren J, Cheng L, Shen L. Preparation and characterization of a poly (vinyl alcohol)/tetraethoxysilane ultrafiltration membrane by a sol-gel method. Journal of Applied Polymer Science 2013; 130(6): 4066–4074. doi: 10.1002/app.39502

124. Yang Y, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer 2006; 47(8): 2683–2688. doi: 10.1016/j.polymer.2006.01.019

125. Yu H, Cao Y, Kang G, et al. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization. Journal of Membrane Science 2009; 342(1–2): 6–13. doi: 10.1016/j.memsci.2009.05.041

126. Boricha AG, Murthy ZVP. Acrylonitrile butadiene styrene/chitosan blend membranes: Preparation, characterization and performance for the separation of heavy metals. Journal of Membrane Science 2009; 339(1–2): 239–249. doi: 10.1016/j.memsci.2009.04.057

127. Wang Y, Kim JH, Choo KH, et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science 2000; 169(2): 269–276. doi: 10.1016/S0376-7388(99)00345-2

128. Qiu C, Xu F, Nguyen QT, Ping Z. Nanofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV-induced grafting method. Journal of Membrane Science 2005; 255(1–2): 107–115. doi: 10.1016/j.memsci.2005.01.027

129. Yong WF, Zhang H. Recent advances in polymer blend membranes for gas separation and pervaporation. Progress in Materials Science 2021; 116: 100713. doi: 10.1016/j.pmatsci.2020.100713

130. Huertas RM, Fraga MC, Crespo JG, Pereira VJ. Sol-gel membrane modification for enhanced photocatalytic activity. Separation and Purification Technology 2017; 180: 69–81. doi: 10.1016/j.seppur.2017.02.047

131. Upadhyaya L, Qian X, Wickramasinghe SR. Chemical modification of membrane surface–overview. Current Opinion in Chemical Engineering 2018; 20: 13–18. doi: 10.1016/j.coche.2018.01.002

132. Mosaffa E, Ghafuri H, Esmaili Zand HR. Improvement on physical properties of polyethersulfone membranes modified by poly (1-vinylpyrrolidone) grafted magnetic Fe3O4@SiO2 nanoparticles. Applied Organometallic Chemistry 2019; 33(1): e4639. doi: 10.1002/aoc.4639

133. Gradinaru LM, Vlad S, Ciobanu RC. The development and study of some composite membranes based on polyurethanes and iron oxide nanoparticles. Membranes 2022; 12(11): 1127. doi: 10.3390/membranes12111127

134. Wen Y, Yuan J, Ma X, et al. Polymeric nanocomposite membranes for water treatment: A review. Environmental Chemistry Letters 2019; 17: 1539–1551. doi: 10.1007/s10311-019-00895-9

135. Shen L, Huang Z, Liu Y, et al. Polymeric membranes incorporated with ZnO nanoparticles for membrane fouling mitigation: A brief review. Frontiers in Chemistry 2020; 8: 224. doi: 10.3389/fchem.2020.00224

136. Kusworo TD, Dalanta F, Aryanti N, Othman NH. Intensifying separation and antifouling performance of PSf membrane incorporated by GO and ZnO nanoparticles for petroleum refinery wastewater treatment. Journal of Water Process Engineering 2021; 41: 102030. doi: 10.1016/j.jwpe.2021.102030

137. Dalanta F, Kusworo TD, Aryanti N. Synthesis, characterization, and performance evaluation of UV light-driven Co-TiO2@SiO2 based photocatalytic nanohybrid polysulfone membrane for effective treatment of petroleum refinery wastewater. Applied Catalysis B: Environmental 2022; 316: 121576. doi: 10.1016/j.apcatb.2022.121576

138. Mahdavi H, Karami M. Cross-linked mixed matrix membranes made up of amine-functionalized silica and chloromethylated polysulfone for organic solvent nanofiltration applications. Journal of Environmental Chemical Engineering 2022; 10(2): 107145. doi: 10.1016/j.jece.2022.107145

139. Sun Z, Chen H, Ren X, et al. Preparation and application of zinc oxide/poly (m-phenylene isophthalamide) hybrid ultrafiltration membranes. Journal of Applied Polymer Science 2019; 136(22): 47583. doi: 10.1002/app.47583

140. Gholami F, Zinatizadeh AA, Zinadini S, et al. Enhanced antifouling and flux performances of a composite membrane via incorporating TiO2 functionalized with hydrophilic groups of L-cysteine for nanofiltration. Polymers for Advanced Technologies 2022; 33(5): 1544–1560. doi: 10.1002/pat.5620

141. Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. Journal of Applied Toxicology 2020; 40(1): 37–63. doi: 10.1002/jat.3910

142. Naikoo GA, Arshad F, Almas M, et al. 2D materials, synthesis, characterization and toxicity: A critical review. Chemico-Biological Interactions 2022; 365: 110081. doi: 10.1016/j.cbi.2022.110081

143. Dipheko TD, Matabola KP, Kotlhao K, et al. Fabrication and assessment of ZnO modified polyethersulfone membranes for fouling reduction of bovine serum albumin. International Journal of Polymer Science 2017; 2017: 3587019. doi: 10.1155/2017/3587019

144. Wang M, Liu G, Yu H, et al. ZnO nanorod array modified PVDF membrane with superhydrophobic surface for vacuum membrane distillation application. ACS Applied Materials & Interfaces 2018; 10(16): 13452–13461. doi: 10.1021/acsami.8b00271

145. Hong J, He Y. Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 2014; 332(1): 67–75. doi: 10.1016/j.desal.2013.10.026

146. van den Berg T, Ulbricht M. Polymer nanocomposite ultrafiltration membranes: The influence of polymeric additive, dispersion quality and particle modification on the integration of zinc oxide nanoparticles into polyvinylidene difluoride membranes. Membranes 2020; 10(9): 197. doi: 10.3390/membranes10090197

147. Kusworo TD, Aryanti N, Nurmalasari E, Utomo DP. Surface modification of PES-nano ZnO membrane for enhanced performance in rubber wastewater treatment. AIP Conference Proceedings 2020; 2197(1): 050012. doi: 10.1063/1.5140924

148. Zawisza B, Sitko R, Queralt I, et al. Cellulose mini-membranes modified with TiO2 for separation, determination, and speciation of arsenates and selenites. Microchimica Acta 2020; 187: 430. doi: 10.1007/s00604-020-04387-4

149. Zhang J, Zheng M, Zhou Y, et al. Preparation of nano-TiO2-modified PVDF membranes with enhanced antifouling behaviors via phase inversion: Implications of nanoparticle dispersion status in casting solutions. Membranes 2022; 12(4): 386. doi: 10.3390/membranes12040386

150. Kang Y, Jiao S, Wang B, et al. PVDF-modified TiO2 nanowires membrane with underliquid dual superlyophobic property for switchable separation of oil-water emulsions. ACS Applied Materials & Interfaces 2020; 12(36): 40925–40936. doi: 10.1021/acsami.0c11266

151. Li T, Gao Y, Zhou J, et al. A membrane modified with nitrogen-doped TiO2/graphene oxide for improved photocatalytic performance. Applied Sciences 2019; 9(5): 855. doi: 10.3390/app9050855

152. Fekete L, Fazekas ÁF, Hodúr C, et al. Outstanding separation performance of Oil-in-Water emulsions with TiO2/CNT nanocomposite-modified PVDF membranes. Membranes 2023; 13(2): 209. doi: 10.3390/membranes13020209

153. Huh JY, Lee J, Bukhari SZA,et al. Development of TiO2-coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification. Scientific Reports 2020; 10(1): 17811. doi: 10.1038/s41598-020-74637-1

154. Kajau A, Motsa M, Mamba BB, Mahlangu O. Leaching of CuO nanoparticles from PES ultrafiltration membranes. ACS Omega 2021; 6(47): 31797–31809. doi: 10.1021/acsomega.1c04431

155. Kar S, Subramanian M, Ghosh AK, et al. Potential of nanoparticles for water purification: A case-study on anti-biofouling behaviour of metal based polymeric nanocomposite membrane. Desalination and Water Treatment 2011; 27(1–3): 224–230. doi: 10.5004/dwt.2011.1967

156. Chen Y, Zhang Y, Liu J, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chemical Engineering Journal 2012; 210: 298–308. doi: 10.1016/j.cej.2012.08.100

157. Akar N, Asar B, Dizge N, Koyuncu I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. Journal of Membrane Science 2013; 437: 216–226. doi: 10.1016/j.memsci.2013.02.012

158. García A, Rodríguez B, Oztürk D, et al. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polymer Bulletin 2018; 75: 2053–2069. doi: 10.1007/s00289-017-2146-4

159. Ben-Sasson M, Lu X, Nejati S, et al. In situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 2016; 388: 1–8. doi: 10.1016/j.desal.2016.03.005

160. Hosseini SM, Karami F, Farahani SK, et al. Tailoring the separation performance and antifouling property of polyethersulfone based NF membrane by incorporating hydrophilic CuO nanoparticles. Korean Journal of Chemical Engineering 2020; 37: 866–874. doi: 10.1007/s11814-020-0497-2

161. Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011; 278(1–3): 343–353. doi: 10.1016/j.desal.2011.05.049

162. Pereira VR, Isloor AM, Zulhairun AK, et al. Preparation of polysulfone-based PANI-TiO2 nanocomposite hollow fiber membranes for industrial dye rejection applications. RSC Advances 2016; 6(102): 99764–99773. doi: 10.1039/C6RA18682C

163. Azhar FH, Harun Z, Alias SS, et al. Self-cleaning antifouling performance based on the surface area of flower-like TiO2 as additive for PSf mixed matrix membrane. Macromolecular Research 2020; 28: 625–635. doi: 10.1007/s13233-020-8082-4

164. Pereira VR, Isloor AM, Al Ahmed A, Ismail AF. Preparation, characterization and the effect of PANI coated TiO2 nanocomposites on the performance of polysulfone ultrafiltration membranes. New Journal of Chemistry 2015; 39(1): 703–712. doi: 10.1039/C4NJ01594K

165. Bidsorkhi HC, Riazi H, Emadzadeh D, et al. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane. Nanotechnology 2016; 27(41): 415706. doi: 10.1088/0957-4484/27/41/415706

166. Li JF, Xu ZL, Yang H, et al. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science 2009; 255(9): 4725–4732. doi: 10.1016/j.apsusc.2008.07.139

167. Du C, Wang Z, Liu G, et al. One-step electrospinning PVDF/PVP-TiO2 hydrophilic nanofiber membrane with strong oil-water separation and anti-fouling property. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021; 624: 126790. doi: 10.1016/j.colsurfa.2021.126790

168. Zhou A, Wang Y, Sun S, et al. Removal of sulfadiazine in a modified ultrafiltration membrane (PVDF-PVP-TiO2-FeCl3) filtration-photocatalysis system: Parameters optimizing and interferences of drinking water. Environmental Science and Pollution Research 2020; 27: 45605–45617. doi: 10.1007/s11356-020-10426-7

169. Aoudjit L, Salazar H, Zioui D, et al. Reusable Ag@TiO2-based photocatalytic nanocomposite membranes for solar degradation of contaminants of emerging concern. Polymers 2021; 13(21): 3718. doi: 10.3390/polym13213718

170. Zheng F, Martins PM, Queirós JM, et al. Hybrid TiO2: Au nanostars based polymeric membranes for photocatalytic degradation of ciprofloxacin in water samples. Chemosphere 2023; 313: 137630. doi: 10.1016/j.chemosphere.2022.137630

171. Yu LY, Shen HM, Xu ZL. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. Journal of Applied Polymer Science 2009; 113(3): 1763–1772. doi: 10.1002/app.29886

172. Hosseini SS, Fakharian Torbati S, Alaei Shahmirzadi MA, Tavangar T. Fabrication, characterization, and performance evaluation of polyethersulfone/TiO2 nanocomposite ultrafiltration membranes for produced water treatment. Polymers for Advanced Technologies 2018; 29(10): 2619–2631. doi: 10.1002/pat.4376

173. Popa A, Toloman D, Stefan M, et al. Hybrid PVDF-P(L-DOPA)-ZnO membranes for dyes and antibiotics removal through simultaneous action of adsorption and photocatalysis processes. Journal of Environmental Chemical Engineering 2021; 9(6): 106812. doi: 10.1016/j.jece.2021.106812

174. Boopathy G, Gangasalam A, Mahalingam A. Photocatalytic removal of organic pollutants and self-cleaning performance of PES membrane incorporated sulfonated graphene oxide/ZnO nanocomposite. Journal of Chemical Technology & Biotechnology 2020; 95(11): 3012–3023. doi: 10.1002/jctb.6462

175. Yu W, Liu Y, Xu Y, et al. A conductive PVDF-Ni membrane with superior rejection, permeance and antifouling ability via electric assisted in-situ aeration for dye separation. Journal of Membrane Science 2019; 581: 401–412. doi: 10.1016/j.memsci.2019.03.083

176. Zhao Y, Yu W, Li R, et al. Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment. Applied Surface Science 2019; 483: 1006–1016.

177. Mousa HM, Hamdy M, Yassin MA, et al. Characterization of nanofiber composite membrane for high water flux and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022; 651: 129655. doi: 10.1016/j.colsurfa.2022.129655

178. Otitoju TA, Ahmad AL, Ooi BS. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Advances 2018; 8(40): 22710–22728. doi: 10.1039/C8RA03296C

179. Yuliwati E, Ismail AF, Mohruni AS, Mataram A. Optimum parameters for treating coolant wastewater using PVDF-membrane. MATEC Web of Conferences 2018; 156: 08011. doi: 10.1051/matecconf/201815608011

180. Yu S, Zuo X, Bao R, et al. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer 2009; 50(2): 553–559. doi: 10.1016/j.polymer.2008.11.012

181. Ali MEA, Shahat A, Ayoub TI, Kamel RM. Fabrication of high flux polysulfone/mesoporous silica nanocomposite ultrafiltration membranes for industrial wastewater treatment. Biointerface Research in Applied Chemistry 2022; 12(6): 7556–7572. doi: 10.33263/BRIAC126.75567572

182. Shakak M, Rezaee R, Maleki A, et al. Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environmental Technology & Innovation 2020; 17: 100529. doi: 10.1016/j.eti.2019.100529

183. Liu Y, Guo R, Shen G, et al. Construction of CuO@CuS/PVDF composite membrane and its superiority for degradation of antibiotics by activation of persulfate. Chemical Engineering Journal 2021; 405: 126990. doi: 10.1016/j.cej.2020.126990

184. Heidari G, Afruzi FH, Zare EN. Molecularly imprinted magnetic nanocomposite based on carboxymethyl dextrin for removal of ciprofloxacin antibiotic from contaminated water. Nanomaterials 2023; 13(3): 489. doi: 10.3390/nano13030489

185. Aniagor CO, Igwegbe CA, Iwuozor KO, et al. CuO nanoparticles as modifiers for membranes: A review of performance for water treatment. Materials Today Communications 2022; 32: 103896. doi: 10.1016/j.mtcomm.2022.103896

186. Mahdavi Far R, Van der Bruggen B, Verliefde A, Cornelissen E. A review of zeolite materials used in membranes for water purification: History, applications, challenges and future trends. Journal of Chemical Technology & Biotechnology 2022; 97(3): 575–596. doi: 10.1002/jctb.6963

187. Rahman ROA, El-Kamash AM, Hung YT. Applications of nano-zeolite in wastewater treatment: An overview. Water 2022; 14(2): 137. doi: 10.3390/w14020137

188. Nasir AM, Goh PS, Abdullah MS, et al. Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges. Chemosphere 2019; 232: 96–112. doi: 10.1016/j.chemosphere.2019.05.174

189. Kraljević Pavelić S, Simović Medica J, Gumbarević D, et al. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Frontiers in Pharmacology 2018; 9: 1350. doi: 10.3389/fphar.2018.01350

190. Kazemimoghadam M. New nanopore zeolite membranes for water treatment. Desalination 2010; 251(1–3): 176–180. doi: 10.1016/j.desal.2009.11.036

191. Cho CH, Oh KY, Kim SK, et al. Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection. Journal of Membrane Science 2011; 371(1–2): 226–238. doi: 10.1016/j.memsci.2011.01.049

192. Sharma V, Kumar RV, Pakshirajan K, Pugazhenthi G. Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution. Powder Technology 2017; 321: 259–269. doi: 10.1016/j.powtec.2017.08.040

193. Ganta D, Guzman C, Combrink K, Fuentes M. Adsorption and removal of thymol from water using a zeolite imidazolate framework-8 nanomaterial. Analytical Letters 2021; 54(4): 625–636. doi: 10.1080/00032719.2020.1774601

194. Chen F, Jin X, Jia D, et al. Efficient treament of organic pollutants over CdS/graphene composites photocatalysts. Applied Surface Science 2020; 504: 144422. doi: 10.1016/j.apsusc.2019.144422

195. Wanda EMM, Mamba BB, Msagati TAM. Comparative analysis of performance of fabricated nitrogen-doped carbon-nanotubes, silicon/germanium dioxide embedded polyethersulfone membranes for removal of emerging micropollutants from water. Physics and Chemistry of the Earth, Parts A/B/C 2022; 127: 103164. doi: 10.1016/j.pce.2022.103164

196. Al Sheheri SZ, Al-Amshany ZM, Al Sulami QA, et al. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Designed Monomers and Polymers 2019; 22(1): 8–53. doi: 10.1080/15685551.2019.1565664

197. Alshammari BA, Wilkinson AN, AlOtaibi BM, Alotibi MF. Influence of carbon micro- and nano-fillers on the viscoelastic properties of polyethylene terephthalate. Polymers 2022; 14(12): 2440. doi: 10.3390/polym14122440

198. Bhushan B. Gecko feet: Natural hairy attachment systems for smart adhesion–mechanism, modeling and development of bio-inspired materials. In: Nanotribology and Nanomechanics. Springer; 2010. pp. 1073–1134.

199. Sahu A, Dosi R, Kwiatkowski C, et al. Advanced polymeric nanocomposite membranes for water and wastewater treatment: A comprehensive review. Polymers 2023; 15(3): 540. doi: 10.3390/polym15030540

200. O’Hern SC, Boutilier MSH, Idrobo JC, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters 2014; 14(3): 1234–1241. doi: 10.1021/nl404118f

201. Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010; 6(6): 711–723. doi: 10.1002/smll.200901934

202. Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews 2012; 112(11): 6027–6053. doi: 10.1021/cr300115g

203. Majumder P, Gangopadhyay R. Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: An overview. RSC Advances 2022; 12(9): 5686–5719. doi: 10.1039/D1RA06731A

204. Ahn CH, Baek Y, Lee C, et al. Carbon nanotube-based membranes: Fabrication and application to desalination. Journal of Industrial and Engineering Chemistry 2012; 18(5): 1551–1559. doi: 10.1016/j.jiec.2012.04.005

205. Ezat GS, Kelly AL, Youseffi M, Coates PD. Tensile, rheological and morphological characterizations of multi-walled carbon nanotube/polypropylene composites prepared by microinjection and compression molding. International Polymer Processing 2022; 37(1): 45–53. doi: 10.1515/ipp-2021-4156

206. Luna CBB, da Silva Barbosa Ferreira E, Siqueira DD, et al. Electrical nanocomposites of PA6/ABS/ABS-MA reinforced with carbon nanotubes (MWCNTf) for antistatic packaging. Polymer Composites 2022; 43(6): 3639–3658. doi: 10.1002/pc.26643

207. Wu S, Li K, Shi W, Cai J. Chitosan/polyvinylpyrrolidone/polyvinyl alcohol/carbon nanotubes dual layers nanofibrous membrane constructed by electrospinning-electrospray for water purification. Carbohydrate Polymers 2022; 294: 119756. doi: 10.1016/j.carbpol.2022.119756

208. Shawky HA, Chae SR, Lin S, Wiesner MR. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 2011; 272(1–3): 46–50. doi: 10.1016/j.desal.2010.12.051

209. Dumee L, Lee J, Sears K, et al. Fabrication of thin film composite poly (amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. Journal of Membrane Science 2013; 427: 422–430. doi: 10.1016/j.memsci.2012.09.026

210. Yang G, Bao D, Zhang D, et al. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Research Letters 2018; 13(1): 146. doi: 10.1186/s11671-018-2555-9

211. Liu M, Liu Y, Bao D, et al. Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Scientific Reports 2017; 7(1): 43717. doi: 10.1038/srep43717

212. Liu Y, Tu W, Chen M, et al. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chemical Engineering Journal 2018; 336: 263–277. doi: 10.1016/j.cej.2017.12.043

213. Zhu Y, Chen P, Nie W, Zhou Y. Greatly improved oil-in-water emulsion separation properties of graphene oxide membrane upon compositing with halloysite nanotubes. Water, Air, & Soil Pollution 2018; 229: 94. doi: 10.1007/s11270-018-3757-6

214. Zare Y. The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology. Composites Part A: Applied Science and Manufacturing 2016; 91(Part 1): 127–132. doi: 10.1016/j.compositesa.2016.10.003

215. Chen J, Li K, Zhang H, et al. Highly efficient and robust oil/water separation materials based on wire mesh coated by reduced graphene oxide. Langmuir 2017; 33(38): 9590–9597. doi: 10.1021/acs.langmuir.7b01856

216. Naseem S, Wu CM, Xu TZ, et al. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers 2018; 10(7): 746. doi: 10.3390/polym10070746

217. Liu Y, Su Y, Guan J, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation. Advanced Functional Materials 2018; 28(13): 1706545. doi: 10.1002/adfm.201706545

218. Guo G, Liu L, Zhang Q, et al. Solution-processable, durable, scalable, fluorine-grafted graphene-based superhydrophobic coating for highly efficient oil/water separation under harsh environment. New Journal of Chemistry 2018; 42(5): 3819–3827. doi: 10.1039/C7NJ05182D

219. Chen Q, Yu Z, Li F, et al. A novel photocatalytic membrane decorated with RGO-Ag-TiO2 for dye degradation and oil-water emulsion separation. Journal of Chemical Technology & Biotechnology 2018; 93(3): 761–775. doi: 10.1002/jctb.5426

220. Peng Y, Yu Z, Li F, et al. A novel reduced graphene oxide-based composite membrane prepared via a facile deposition method for multifunctional applications: Oil/water separation and cationic dyes removal. Separation and Purification Technology 2018; 200: 130–140. doi: 10.1016/j.seppur.2018.01.059

221. Lee TH, Lee MY, Lee HD, et al. Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes. Journal of Membrane Science 2017; 539: 441–450. doi: 10.1016/j.memsci.2017.06.027

222. Wang X, Wang A, Ma J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. Journal of Hazardous Materials 2017; 336: 81–92. doi: 10.1016/j.jhazmat.2017.04.012

223. Bhattacharya S, Banerjee P, Das P, et al. Removal of aqueous carbamazepine using graphene oxide nanoplatelets: Process modelling and optimization. Sustainable Environment Research 2020; 30(1): 17. doi: 10.1186/s42834-020-00062-8

224. Gao Y, Liu K, Kang R, et al. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. Journal of Hazardous Materials 2018; 359: 248–257. doi: 10.1016/j.jhazmat.2018.07.054

225. Jun BM, Heo J, Park CM, Yoon Y. Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework. Chemosphere 2019; 235: 527–537. doi: 10.1016/j.chemosphere.2019.06.208

226. Kim S, Muñoz-Senmache JC, Jun BM, et al. A metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter. Chemical Engineering Journal 2020; 382: 122920. doi: 10.1016/j.cej.2019.122920

227. Basu S, Balakrishnan M. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Separation and Purification Technology 2017; 179: 118–125. doi: 10.1016/j.seppur.2017.01.061

228. Attia MS, Youssef AO, Abou-Omar MN, et al. Emerging advances and current applications of nanoMOF-based membranes for water treatment. Chemosphere 2022; 292: 133369. doi: 10.1016/j.chemosphere.2021.133369

229. Mao H, Zhen HG, Ahmad A, et al. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science 2019; 573: 344–358. doi: 10.1016/j.memsci.2018.12.017

230. Sun Y, Zhang R, Zhao C, et al. Self-modified fabrication of inner skin ZIF-8 tubular membranes by a counter diffusion assisted secondary growth method. RSC Advances 2014; 4(62): 33007–33012. doi: 10.1039/C4RA05182C

231. Hung WS, An QF, De Guzman M, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 2014; 68: 670–677. doi: 10.1016/j.carbon.2013.11.048

232. Arjmandi M, Peyravi M, Chenar MP, Jahanshahi M. A new concept of MOF-based PMM by modification of conventional dense film casting method: Significant impact on the performance of FO process. Journal of Membrane Science 2019; 579: 253–265. doi: 10.1016/j.memsci.2019.02.020

233. Wang Z, Zhang B, Fang C, et al. Macroporous membranes doped with micro-mesoporous β-cyclodextrin polymers for ultrafast removal of organic micropollutants from water. Carbohydrate Polymers 2019; 222: 114970. doi: 10.1016/j.carbpol.2019.114970

234. Ali JK, Abi Jaoude M, Alhseinat E. Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Separation and Purification Technology 2021; 266: 118585. doi: 10.1016/j.seppur.2021.118585

235. Urtiaga AM, Pérez G, Ibáñez R, Ortiz I. Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination 2013; 331: 26–34. doi: 10.1016/j.desal.2013.10.010

236. Liao Z, Nguyen MN, Wan G, et al. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. Journal of Hazardous Materials 2020; 397: 122779. doi: 10.1016/j.jhazmat.2020.122779

237. Zhou A, Jia R, Wang Y, et al. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Separation and Purification Technology 2020; 234: 116099. doi: 10.1016/j.seppur.2019.116099

238. Botton S, Verliefde ARD, Quach NT, Cornelissen ER. Influence of biofouling on pharmaceuticals rejection in NF membrane filtration. Water Research 2012; 46(18): 5848–5860. doi: 10.1016/j.watres.2012.07.010

239. Wang C, Wu H, Qu F, et al. Preparation and properties of polyvinyl chloride ultrafiltration membranes blended with functionalized multi-walled carbon nanotubes and MWCNTs/Fe3O4 hybrids. Journal of Applied Polymer Science 2016; 133(20). doi: 10.1002/app.43417

240. Lv Y, Yang HC, Liang HQ, et al. Novel nanofiltration membrane with ultrathin zirconia film as selective layer. Journal of Membrane Science 2016; 500: 265–271. doi: 10.1016/j.memsci.2015.11.046

241. Zargar M, Hartanto Y, Jin B, Dai S. Polyethylenimine modified silica nanoparticles enhance interfacial interactions and desalination performance of thin film nanocomposite membranes. Journal of Membrane Science 2017; 541: 19–28. doi: 10.1016/j.memsci.2017.06.085

242. Wu SL, Liu F, Yang HC, Darling SB. Recent progress in molecular engineering to tailor organic-inorganic interfaces in composite membranes. Molecular Systems Design & Engineering 2020; 5(2): 433–444. doi: 10.1039/C9ME00154A

243. Rajaeian B, Rahimpour A, Tade MO, Liu S. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 2013; 313: 176–188. doi: 10.1016/j.desal.2012.12.012

244. Choi WS, Lee HJ. Nanostructured materials for water purification: Adsorption of heavy metal ions and organic dyes. Polymers 2022; 14(11): 2183. doi: 10.3390/polym14112183




DOI: https://doi.org/10.24294/ace.v6i2.2066

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.