Advancement in steam reforming of methanol to produce hydrogen: A review
Vol 6, Issue 2, 2023
VIEWS - 2050 (Abstract)
Abstract
The main deliberation of this review paper is on metallic catalysts, including Cu-based catalysts, with distinct formulations and compositions, utilized for steam reforming of methanol (SRM). The review critically examines the performance of these catalysts, considering the active components, supports, promoters, and their interactions. Additionally, the review identifies and elucidates the various kinds of reaction mechanisms and routes involved in SRM. This comprehensive analysis provides valuable insights into the progress of well-organized and effective catalysts for SRM. To achieve high yields of H2, it is crucial to conduct a fundamental study of the role of copper as a component in both mono and multimetallic systems, as well as the nature of support. These factors are essential to understand the catalytic mechanisms involved in the steam reforming of methanol and to develop effective strategies for optimizing hydrogen production. Therefore, a thorough investigation of copper-based catalysts and their interaction with the support material is essential for the development of highly efficient steam reforming processes.
Keywords
Full Text:
PDFReferences
1. Ranjekar AM, Yadav GD. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope. Industrial & Engineering Chemistry Research 2021; 60(1): 89–113. doi: 10.1021/acs.iecr.0c05041
2. Olah GA. Towards oil independence through renewable methanol chemistry. Angewandte Chemie International Edition 2013; 52(1): 104–107. doi: 10.1002/anie.201204995
3. Wang J, Wang H, Hu P. Theoretical insight into methanol steam reforming on indium oxide with different coordination environments. Science China Chemistry 2018; 61: 336–343. doi: 10.1007/s11426-017-9139-x
4. Cacciola G, Antonucci V, Freni S. Technology up date and new strategies on fuel cells. Journal of power sources 2001; 100(1–2): 67–79. doi: 10.1016/S0378-7753(01)00884-9
5. Xu X, Liu X, Xu B. A survey of nickel-based catalysts and monolithic reformers of the onboard fuel reforming system for fuel cell APU applications. International Journal of Energy Research 2016; 40(9): 1157–1177. doi: 10.1002/er.3509
6. Kaftan A, Kusche M, Laurin M, et al. KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. Applied Catalysis B: Environmental 2017; 201: 169–181. doi: 10.1016/j.apcatb.2016.08.016
7. García L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. In: Subramani V, Basile A, Veziroğlu TN (editors). Compendium of Hydrogen Energy. Woodhead Publishing; 2015. pp. 83–107.
8. Sun P, Young B, Elgowainy A, et al. Criteria air pollutants and greenhouse gas emissions from hydrogen production in US steam methane reforming facilities. Environmental science & technology 2019; 53(12): 7103–7113. doi: 10.1021/acs.est.8b06197
9. Cormos AM, Szima S, Fogarasi S, Cormos CC. Economic assessments of hydrogen production processes based on natural gas reforming with carbon capture. Chemical Engineering Transactions 2018; 70: 1231–1236. doi: 10.3303/CET1870206
10. Byun M, Lee B, Lee H, et al. Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales. International Journal of Hydrogen Energy 2020; 45(46): 24146–24158. doi: 10.1016/j.ijhydene.2020.06.097
11. Ribeirinha P, Mateos-Pedrero C, Boaventura M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model. Applied Catalysis B: Environmental 2018; 221: 371–379. doi: 10.1016/j.apcatb.2017.09.040
12. Basile A, Parmaliana A, Tosti S, et al. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. Catalysis Today 2008; 137(1): 17–22. doi: 10.1016/j.cattod.2008.03.015
13. Ott J, Gronemann V, Pontzen F, et al. Methanol. In: Ullmann’s Encyclopedia of Industrial Chemistry. American Cancer Society; 2012. doi: 10.1002/14356007.a16_465.pub3
14. Ahmed S, Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells. International Journal of Hydrogen Energy 2001; 26(4); 291–301. doi: 10.1016/S0360-3199(00)00097-5
15. Staffell I, Scamman D, Abad AV, et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019; 12(2): 463–491. doi: 10.1039/c8ee01157e
16. Dhar HP, Christner LG, Kush AK. Nature of CO adsorption during H2 oxidation in relation to modeling for CO poisoning of a fuel cell anode. Journal of the Electrochemical Society 1987; 134(12): 3021. doi: 10.1149/1.2100333
17. Kubacka A, Fernández-García M, Martínez-Arias A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis A: General 2016; 518: 2–17. doi: 10.1016/j.apcata.2016.01.027
18. Karim AM, Conant T, Datye AK. Controlling ZnO morphology for improved methanol steam reforming reactivity. Physical Chemistry Chemical Physics 2008; 10(36): 5584–5590. doi: 10.1039/b800009c
19. Papavasiliou J, Avgouropoulos G, Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Applied Catalysis B: Environmental 2009; 88(3–4): 490–496. doi: 10.1016/j.apcatb.2008.10.018
20. Kubacka A, Martínez-Arias A, Fernández-García M. Role of the interface in base-metal ceria-based catalysts for hydrogen purification and production processes. ChemCatChem 2015; 7(22): 3614–3624. doi: 10.1002/cctc.201500593
21. Hardiman KM, Ying TT, Adesina AA, et al. Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios. Chemical Engineering Journal 2004; 102(2): 119–130. doi: 10.1016/j.cej.2004.03.005
22. Alenazey F, Cooper CG, Dave CB, et al. Coke removal from deactivated Co-Ni steam reforming catalyst using different gasifying agents: An analysis of the gas-solid reaction kinetics. Catalysis Communications 2009; 10(4): 406–411. doi: 10.1016/j.catcom.2008.10.010
23. Song H, Ozkan US. Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations. International Journal of Hydrogen Energy 2010; 35(1); 127–134. doi: 10.1016/j.ijhydene.2009.10.043
24. Zhang G, Jin W, Xu N. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 2018; 4(6): 848–860. doi: 10.1016/j.eng.2017.05.001
25. Gallucci F, Fernandez E, Corengia P, van Sint Annaland M. Recent advances on membranes and membrane reactors for hydrogen production. Chemical Engineering Science 2013; 92: 40–66. doi: 10.1016/j.ces.2013.01.008
26. Liuzzi D, Fernandez E, Perez S, et al. Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production. Reviews in Chemical Engineering 2022; 38(1): 55–76. doi: 10.1515/revce-2019-0067
27. Pashchenko D. Low-grade heat utilization in the methanol-fired gas turbines through a thermochemical fuel transformation. Thermal Science and Engineering Progress 2022; 36: 101537. doi: 10.1016/j.tsep.2022.101537
28. Pashchenko D, Gnutikova M, Karpilov I. Comparison study of thermochemical waste-heat recuperation by steam reforming of liquid biofuels. International Journal of Hydrogen Energy 2020; 45(7): 4174–4181. doi: 10.1016/j.ijhydene.2019.11.202
29. Pashchenko D. Thermochemical waste-heat recuperation as on-board hydrogen production technology. International Journal of Hydrogen Energy 2021; 46(57): 28961–28968. doi: 10.1016/j.ijhydene.2020.11.108
30. Pashchenko D. Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation. Energy 2019; 166: 462–470. doi: 10.1016/j.energy.2018.10.084
31. Pashchenko D, Karpilov I, Mustafin R. Numerical calculation with experimental validation of pressure drop in a fixed-bed reactor filled with the porous elements. AIChE Journal 2020; 66(5): e16937. doi: 10.1002/aic.16937
32. Thattarathody R, Artoul M, Digilov RM, Sheintuch M. Pressure, diffusion, and S/M ratio effects in methanol steam reforming kinetics. Industrial & Engineering Chemistry Research 2018; 57(9): 3175–3186. doi: 10.1021/acs.iecr.7b05033
33. Wang J, Wu J, Xu Z, Li M. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming. Energy Conversion and Management 2017; 150: 81–89. doi: 10.1016/j.enconman.2017.08.012
34. Hosseini SS, Mehrpooya M, Alsagri AS, Alrobaian AA. Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle. Energy Conversion and Management 2019; 197: 111878. doi: 10.1016/j.enconman.2019.111878
35. Schuller G, Vázquez FV, Waiblinger W, et al. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer. Journal of Power Sources 2017; 347: 47–56. doi: 10.1016/j.jpowsour.2017.02.021
36. Sun Z, Fang S, Lin Y, Hu YH. Photo-assisted methanol steam reforming on solid solution of Cu-Zn-Ti oxide. Chemical Engineering Journal 2019; 375: 121909. doi: 10.1016/j.cej.2019.121909
37. Chiarello GL, Ferri D, Selli E. In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2. Applied Surface Science 2018; 450: 146–154. doi: 10.1016/j.apsusc.2018.04.167
38. Fasolini A, Cucciniello R, Paone E, et al. A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6-C5 sugars and polyols. Catalysts 2019; 9(11): 917. doi: 10.3390/catal9110917
39. Huber GW, Dumesic JA. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today 2006; 111(1–2): 119–132. doi: 10.1016/j.cattod.2005.10.010
40. Davda RR, Shabaker JW, Huber GW, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental 2005; 56(1–2): 171–186. doi: 10.1016/j.apcatb.2004.04.027
41. Stekrova M, Rinta-Paavola A, Karinen R. Hydrogen production via aqueous-phase reforming of methanol over nickel modified Ce, Zr and La oxide supports. Catalysis Today 2018; 304: 143–152. doi: 10.1016/j.cattod.2017.08.030
42. Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002; 418(6901): 964–967. doi: 10.1038/nature01009
43. Sharma R, Kumar A, Upadhyay RK. Bimetallic Fe-promoted catalyst for CO-free hydrogen production in high-temperature-methanol steam reforming. ChemCatChem 2019; 11(18): 4568–4580. doi: 10.1002/cctc.201901062
44. Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy 2019; 44(23): 11901–11919. doi: 10.1016/j.ijhydene.2019.03.063
45. Goeppert A, Czaun M, Jones JP, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chemical Society Reviews 2014; 43(23): 7995–8048. doi: 10.1039/c4cs00122b
46. Guczi L, Erdôhelyi A (editors). Catalysis for Alternative Energy Generation. Springer; 2012.
47. Richards N, Needels J, Erickson P. Autothermal-reformation enhancement using a stratified-catalyst technique. International Journal of Hydrogen Energy 2017; 42(41): 25914–25923. doi: 10.1016/j.ijhydene.2017.08.050
48. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angewandte Chemie International Edition 2016; 55(26): 7296–7343. doi: 10.1002/anie.201507458
49. Emami SD, Kasmani RM, Hamid MD, et al. Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems—A review paper. Renewable and Sustainable Energy Reviews 2016; 62: 1072–1082. doi: 10.1016/j.rser.2016.05.029
50. Chehade G, Lytle S, Ishaq H, et al. Hydrogen production by microwave based plasma dissociation of water. Fuel 2020; 264: 116831. doi: 10.1016/j.fuel.2019.116831
51. Niermann M, Beckendorff A, Kaltschmitt M, Bonhoff K. Liquid organic hydrogen carrier (LOHC)—Assessment based on chemical and economic properties. International Journal of Hydrogen Energy 2019; 44: 6631–6654. doi: 10.1016/j.ijhydene.2019.01.199
52. Dimitriou P, Tsujimura T. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy 2017; 42(38): 24470–24486. doi: 10.1016/j.ijhydene.2017.07.232
53. Yan F, Xu L, Wang Y. Application of hydrogen enriched natural gas in spark ignition IC engines: From fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews 2018; 82: 1457–1488. doi: 10.1016/j.rser.2017.05.227
54. Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 2012; 16(5): 3024–3033. doi: 10.1016/j.rser.2012.02.028
55. Li H, Ma C, Zou X, et al. On-board methanol catalytic reforming for hydrogen production—A review. International Journal of Hydrogen Energy 2021; 46(43): 22303–22327. doi: 10.1016/j.ijhydene.2021.04.062
56. Yong ST, Ooi CW, Chai SP, Wu XS. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. International Journal of Hydrogen Energy 2013; 38(22): 9541–9552. doi: 10.1016/j.ijhydene.2013.03.023
57. Kubacka A, Fernández-García M, Martínez-Arias A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis A: General 2016; 518: 2–17. doi: 10.1016/j.apcata.2016.01.027
58. Li J, Mei X, Zhang L, et al. A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn-based catalysts in steam reforming of methanol, acetic acid and acetone. International Journal of Hydrogen Energy 2020; 45(6): 3815–3832. doi: 10.1016/j.ijhydene.2019.03.269
59. Fu Z, Wang J, Zhang N, et al. Effect of Cu doping on the catalytic activity of Fe3O4 in water-gas shift reactions. International Journal of Hydrogen Energy 2015; 40(5): 2193–2198. doi: 10.1016/j.ijhydene.2014.12.063
60. Wang L, Zhang F, Miao D, et al. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production. Materials Research Express 2017; 4(3): 035005. doi: 10.1088/2053-1591/4/3/035005
61. Zhang F, Guo H, Wang L, et al. Porous Al63Cu25Fe12 quasicrystals covered with (Al11.5Fe13.9Cu19.7)O54.9 nanosheets. Materials Characterization 2019; 147: 165–172. doi: 10.1016/j.matchar.2018.10.026
62. Azenha CSR, Mateos-Pedrero C, Queirós S, et al. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming. Applied Catalysis B: Environmental 2017; 203: 400–407. doi: 10.1016/j.apcatb.2016.10.041
63. Ahmadi F, Haghighi M, Ajamein H. Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming. Journal of Molecular Catalysis A: Chemical 2016; 421: 196–208. doi: 10.1016/j.molcata.2016.05.027
64. Sanches SG, Flores JH, da Silva MIP. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming. Molecular Catalysis 2018; 454: 55–62. doi: 10.1016/j.mcat.2018.05.012
65. Gac W, Słowik G, Zawadzki W. Structural and surface changes of copper modified manganese oxides. Applied Surface Science 2016; 370: 536–544. doi: 10.1016/j.apsusc.2016.02.136
66. Liu X, Toyir J, de la Piscina PR, Homs N. Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts. International Journal of Hydrogen Energy 2017; 42(19): 13704–13711. doi: 10.1016/j.ijhydene.2016.12.133
67. Toyir J, de la Piscina PR, Homs N. Ga-promoted copper-based catalysts highly selective for methanol steam reforming to hydrogen; relation with the hydrogenation of CO2 to methanol. International Journal of Hydrogen Energy 2015; 40(34): 11261–11266. doi: 10.1016/j.ijhydene.2015.04.039
68. Shokrani R, Haghighi M, Jodeiri N, et al. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method. International Journal of Hydrogen Energy 2014; 39(25): 13141–13155. doi: 10.1016/j.ijhydene.2014.06.048
69. Bagherzadeh SB, Haghighi M, Rahemi N. Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol: Influence of ceria-zirconia loading. Energy Conversion and Management 2017; 134: 88–102. doi: 10.1016/j.enconman.2016.12.005
70. Li H, Tian H, Chen S, et al. Sorption enhanced steam reforming of methanol for high-purity hydrogen production over Cu-MgO/Al2O3 bifunctional catalysts. Applied Catalysis B: Environmental 2020; 276: 119052. doi: 10.1016/j.apcatb.2020.119052
71. Lytkina AA, Orekhova NV, Ermilova MM, Yaroslavtsev AB. The influence of the support composition and structure (MХZr1-XO2-δ) of bimetallic catalysts on the activity in methanol steam reforming. International Journal of Hydrogen Energy 2018; 43(1): 198–207. doi: 10.1016/j.ijhydene.2017.10.182
72. Sarafraz MM, Safaei MR, Goodarzi M, Arjomandi M. Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. International Journal of Hydrogen Energy 2019; 44(36): 19628–19639. doi: 10.1016/j.ijhydene.2019.05.215
73. Khani Y, Bahadoran F, Soltanali S, Ahari JS. Hydrogen production by methanol steam reforming on a cordierite monolith reactor coated with Cu–Ni/LaZnAlO4 and Cu–Ni/γ-Al2O3 catalysts. Research on Chemical Intermediates 2018; 44: 925–942. doi: 10.1007/s11164-017-3144-8
74. Cao L, Lu M, Li G, Zhang S. Hydrogen production from methanol steam reforming catalyzed by Fe modified Cu supported on attapulgite clay. Reaction Kinetics, Mechanisms and Catalysis 2019; 126: 137–152. doi: 10.1007/s11144-018-1493-y
75. Hosseini T, Haghighi M, Ajamein H. Fuel cell-grade hydrogen production from methanol over sonochemical coprecipitated copper based nanocatalyst: Influence of irradiation power and time on catalytic properties and performance. Energy Conversion and Management 2016; 126: 595–607. doi: 10.1016/j.enconman.2016.07.056
76. Talkhoncheh SK, Haghighi M, Minaei S, et al. Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production. RSC Advances 2016; 6(62): 57199–57209. doi: 10.1039/C6RA03858A
77. Yang S, Zhou F, Liu Y, et al. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy 2019; 44(14): 7252–7261. doi: 10.1016/j.ijhydene.2019.01.254
78. Tajrishi OZ, Taghizadeh M, Kiadehi AD. Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst. International Journal of Hydrogen Energy 2018; 43(31): 14103–14120. doi: 10.1016/j.ijhydene.2018.06.035
79. Deshmane VG, Abrokwah RY, Kuila D. Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. International Journal of Hydrogen Energy 2015; 40(33): 10439–10452. doi: 10.1016/j.ijhydene.2015.06.084
80. Mohtashami Y, Taghizadeh M. Performance of the ZrO2 promoted Cu–ZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming. International Journal of Hydrogen Energy 2019; 44(12): 5725–5738. doi: 10.1016/j.ijhydene.2019.01.029
81. Sá S, Silva H, Brandão L, et al. Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental 2010; 99(1–2): 43–57. doi: 10.1016/j.apcatb.2010.06.015
82. Fasanya OO, Al-Hajri R, Ahmed OU, et al. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming. International Journal of Hydrogen Energy 2019; 44(41): 22936–22946. doi: 10.1016/j.ijhydene.2019.06.185
83. Tonelli F, Gorriz O, Tarditi A, et al. Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming. International Journal of Hydrogen Energy 2015; 40(39): 13379–13387. doi: 10.1016/j.ijhydene.2015.08.046
84. Palo DR, Dagle RA, Holladay JD. Methanol steam reforming for hydrogen production. Chemical Reviews 2007; 107(10): 3992–4021. doi: 10.1021/cr050198b
85. Kapran AY, Orlyk SM. Hydrogen production in methanol reforming on modified copper-zinc catalysts: A review. Theoretical and Experimental Chemistry 2017; 53: 1–16. doi: 10.1007/s11237-017-9495-9
86. Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today 1997; 36(1): 45–56. doi: 10.1016/S0920-5861(96)00195-2
87. Shishido T, Yamamoto Y, Morioka H, Takehira K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A: Chemical 2007; 268(1–2): 185–194. doi: 10.1016/j.molcata.2006.12.018
88. Frank B, Jentoft FC, Soerijanto H, et al. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. Journal of Catalysis 2007; 246(1): 177–192. doi: 10.1016/j.jcat.2006.11.031
89. Hammoud D, Gennequin C, Aboukaïs A, Abi Aad E. Steam reforming of methanol over x% Cu/Zn–Al 400 500 based catalysts for production of hydrogen: Preparation by adopting memory effect of hydrotalcite and behavior evaluation. International Journal of Hydrogen Energy 2015; 40(2): 1283–1297. doi: 10.1016/j.ijhydene.2014.09.080
DOI: https://doi.org/10.24294/ace.v6i2.2123
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.