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ABSTRACT 

The call for greenhouse gas emission reduction as the result of global warming has been the main cause of the 

more rigorous emission legislation in the road transportation sector. In response to such requirements, car makers opt 

for the ‘down-sizing’ trend for engine displacement with the aim to increase brake thermal efficiency by increasing 

engine load (mean effective pressure). However, this leads to higher potential of engine knocking and elevated NOx 

emissions. This study investigates the effects of combustion phasing induced by water injection via the intake manifold 

of a naturally aspirated GDI engine at MBT ignition timing fuelled with E20. Water up to 30% of fuel mass is port-

injected during high engine load and maximum NOx reduction of up to 82% could be achieved as the result of lower 

RoHR caused by vaporisation of water. Water injection prolonged the ignition delay and combustion duration (CA1090) 

without deterioration of combustion stability (%COV of IMEP). The optimisation of ignition timing based on MBT can 

improve CO emission compared to EGR systems. The proposed study demonstrates the possibility to achieve low 

nitrogen emissions without the need of precious metal-based catalysts. 

Keywords: internal combustion engine; gasoline direct injection engine; water-injection; combustion phasing; NOx 

emissions; alternative fuel; maximum brake torque (MBT) 

1. Introduction 

Global warming is the consequence of the elevated levels of 

greenhouse gas (GHG) emissions which leads to the rise of average 

global atmospheric temperature[1]. Global warming negatively affects 

the environment including human’s livelihoods due to natural 

disasters, for instance, unbalanced water cycle creating drought, 

hotter and longer dry weather causing wildfire, accelerating glacier 

melting those results in the mean sea level rises. Transportation is one 

of the human’s activities that releases a fair share of GHG and other 

pollutants into the atmosphere through the use of internal combustion 

engines (ICE)[2]. Pollutants emitted from ICEs, especially; particulate 

matter (PM) poses a public health crisis[3]. This has driven the 

research and development of cleaner and more efficient ICEs. 

Compression ignition (CI) engines or diesel engines were 

popular among passenger vehicles in the past decade owing to the 

outstanding fuel economy compared to gasoline engine counterparts. 

However, the concerns about PM and NOx emissions together with 

the diesel-gate scandal[4] has changed the direction of research and 

development toward gasoline engines. Despite lower thermal 
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efficiency due to low compression ratio and operation at stoichiometry (φ = 1)[5,6]. However; gasoline 

engines generate significantly lower amounts of PM[7–9] as the result of highly homogeneous combustion 

compared to heterogeneous combustion in diesel engines which have a higher degree of local fuel-rich 

zone[5]. Gasoline direct injection (GDI) engine has been developed to yield better fuel efficiency and 

CO/THC compared to port-injection gasoline engines. 

The EU emission legislation has enforced the CO2 emission limitation per distance travelled[10,11] which 

aims to reduce CO2 emissions from passenger vehicles by 25% within 2025 (to 81 g/km). This influences 

GDI engines to have smaller displacement and operate at higher indicated mean effective pressure (IMEP) 

and at lower RPM in order to attain low brake specific fuel consumption (BSFC)[12–14]. Increasing IMEP can 

be achieved by turbocharging which significantly increases intake air pressure and temperature. This leads to 

the high propensity to self-ignition or knocking[6] which creates in-cylinder pressure anomaly prior to TDC 

creating more negative work and results in lowered thermal efficiency. Knocking can be avoided by using 

rich AFR (Air-fuel ratio) to reduce intake charge temperature, and retarding ignition timing (IGT) which 

simultaneously reduce peak in-cylinder pressure at the expense of worsened fuel economy and engine-out 

pollution. 

Apart from knocking problems, at high engine load, the high in-cylinder pressure and temperature can 

creates a large amount of thermal NOx from N2 reacting with O2
[6]. For gasoline engines, NOx emission can 

be abated using a three way catalyst (TWC) at φ = 1 (net reducing condition) where high conversion of CO 

and THC is simultaneously obtained[15]. However, GDI engines tend to operate at lean burn condition (φ < 1) 

for good fuel economy, but TWC suffers from low NOx conversion due to net oxidation condition (high O2 

concentration). 

Exhaust gas recirculation (EGR) is a NOx control technique that controls combustion phasing and 

reduces combustion temperature through dilution effect, thermal effect, chemical effect, and mass-added 

effect. Dilution effect has a significant influence on NOx reduction via diluting O2 in the intake charge, 

hence the lower adiabatic flame temperature. EGR phases the combustion process toward retard combustion 

(similar to retarded ignition timing) which increases cycle-to-cycle variation (reflects on coefficient of 

variation: COV of IMEP) and reduces combustion efficiency[16]. 20% EGR dilution rate can yield 

approximately 7% COV of IMEP and increases PM, THC and BSFC due mainly to the slower flame 

propagation velocity or laminar flame velocity (LFV). This helps to mitigate the knocking by reducing the 

rate of pressure change in the cylinder. The main challenges of the EGR system are the difficulty of 

controlling EGR flow rate[16–18] and the premature engine wear due to accelerated degrading lubrication oil 

problem[19–21]. 

Water injection is one of the combustion phasing control techniques that had been used in airplanes 

during the World War[22]. This technique can enhance output power and avoid knocking at wide open throttle 

(WOT) condition[22,23] using water’s properties such as high heat of vaporisation, high heat capacity, and 

being inert in the combustion process. All properties mentioned enable intake charge cooling, reduce O2 

concentrations, increase heat capacity of intake charge which helps reduce rate of pressure change, peak 

pressure, peak temperature. Hence, knocking and NOx can be simultaneously suppressed[23,24]. Water 

injection also enables the engine control unit (ECU) to optimise the IGT to KLSA (Knock Limited Spark 

Advance) to obtain maximum brake torque (MBT), thus the engine can operate at higher IMEP[22,24]. 

There are three methods to introduce water into the combustion chamber: water/fuel emulsification, 

water port-injection (WPI), and direct water injection (DWI)[23,24]. Water/fuel emulsification uses emulsifier 

to create water/fuel solutions which existing fuel injection system can be used. However, the addition cost of 

emulsifier, phase instability of water/fuel, fixed water/fuel ratio are the main disadvantages. WPI and DWI 
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have an advantage in terms of ability to adjust water/fuel ratio on-demand. WPI can be categorised into 1) 

single-point injection and 2) multi-point injection. Single-point WPI is simple to established and operate but 

creates an unequal water distribution among cylinders. Meanwhile, multi-point WPI can mitigate this 

problem and places water injectors closer to intake valves helping reduce water loss to wall impingement and 

yield near efficacy to DWI system[23,24]. DWI system can achieve high injection control flexibility and water 

metering accuracy, but high capital cost, high complexity, high energy cost, and cylinder liner impingement 

problem[24] seems to reduce its attractiveness. 

With the literature reviews above, most research works focus on WPI system in turbocharged, high 

boost GDI engines operated with gasoline at high engine load[25,26]. Although, limited number of works pay 

attention to water injection on a natural-aspirated GDI engines fuelled with alternative fuel operated at 

medium to high load region. In this paper, the investigation on the effect of combustion phasing using a 

multi-point WPI system is carried out via an experimental approach. Combustion parameters and engine-out 

gaseous emissions are examined at MBT ignition timing baseline. 

2. Experiment apparatus and research methodology 

2.1. Engine test rig 

The experimental setup is illustrated in Figure 1 which employs a 4-cylinders GDI engine (Mazda 

Skyactiv G P3) mounted to a Lammed DW160H eddy-current dynamometer controlled by an FDJ-001 

engine test rig controller for simulating engine load at constant speed and torque. The GDI engine’s details 

are as shown in Table 1. 

Table 1. GDI engine details. 

Parameter Details 

Brand/Model Mazda/Skyactiv G P3 

Engine type 4 strokes, liquid cooled 

No. of cylinder 4 

Bore × stroke (mm) 71.0 × 82 

Displacement (cm3) 1298 

Compression ratio 12.0:1 

Continuous rated output 69.35 kW/5800 rpm 

Maximum torque 123 Nm at 4000 rpm 

Fuel injection Direct injection 

A Kistler: 6052C-3-1 (Switzerland) pressure sensor and a Kistler 2614CK (Switzerland) crank angle 

encoder is installed to the engine to measure in-cylinder pressure in respect to crank angular rotation. The 

signals from both sensors are processed by a combustion analyser of DEWESoft SIRIUSi-HS-CHG+ 

(Slovenia). 

The GDI engine ignition and injection parameters are controlled by a Link G4 plus Force GDI engine 

ECU. The GDI injector used in the present study are multi-hole injectors with six nozzle holes. The injection 

timing and fuel pressure are set at 330° bTDC and 100 bar, respectively. Commercial grade Gasohol E20 (20% 

ethanol blended with gasoline) is used as fuel for this study. The characteristic of E20 is illustrated in Table 2. 

Multi-hole fuel injectors are used in the present study for water injection which are controlled by a Tech 

4 ECU-SHOP. The designated injection timing of 330° bTDC and the injection pressure of 3 bar are chosen. 

The water injectors are installed on the intake manifold where the distance from the water injector to the 
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lower wall of the intake manifold is 35 mm with an impinging angle of 45°. This results in the horizontal 

distance from the water injector to the intake valve of approximately 130 mm. 

Table 2. E20 fuel properties[27]. 

LHV (MJ/kg) 39.3 

Density (kg/L) 0.757 

RON 95.2 

MON 83.4 

C (%mass) 78 

H (%mass) 13 

O (%mass) 8 

H/C ratio (molar) 2.000 

O/C ratio (molar) 0.077 

2.2. Emission measurement instruments 

GDI engine-out gaseous emissions (HC, CO, NOx, CO2, and O2) are quantified by a Horiba 

MEXA584L[28]. NOx is measured by electrochemical methods. CO, HC, and CO2 are measured by non-

dispersed infrared absorption (NDIR) method. The measurement is taken 3 times with 1 minute interval after 

the engine has reached steady state to obtain an average reading of emissions. 

For EGR dilution rate estimation, CO2 concentrations at the intake manifold and exhaust manifold are 

measured and calculated using Equation (1)[29]. 

%𝐸𝐺𝑅 =
𝐶𝑂2,𝑖𝑛𝑡𝑎𝑘𝑒
𝐶𝑂2,𝑒𝑥ℎ𝑎𝑢𝑠𝑡

× 100% (1) 

 

Figure 1. Schematic of the experimental setup. 

2.3. Experiment procedures and conditions 

a) The engine is operated at a constant speed of 2000 rpm (±5%) and with the indicated mean 

effective pressure (IMEP) of 6 bar corresponding to engine load of approximately 75%. 
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b) Firstly, the sweep test is performed to mainly observe the effect of ignition timing (IGT) on engine 

brake torque which determines the maximum brake torque (MBT)[30] ignition timing. This condition is then 

assumed to be the ‘baseline’ condition. 

c) Then, water injection (abbreviated: H2O_inj) is commenced with the MBT IGT (in this case, IGT 

MBT = 12CA bTDC) from 1.0 ms to 5.5 ms which is corresponding to approximately 5% to 30% of fuel 

(E20) mass injected at baseline condition. This is done to evaluate the effect of water injection on NOx 

reduction (deNOx), other gaseous emissions, and combustion parameters. 

d) After the H2O injection sweep tests, the GDI engine is allowed to return to the baseline condition 

again for 10 minutes before adding EGR. The EGR dilution rate of approximately 10% is performed as a 

benchmark for the deNOx performance. Then, IGT is adjusted to have Peak Pressure Position (PPP) matches 

with that of baseline condition. The comparison between engines operated with EGR and H2O injection is 

evaluated based on the assumptions of equivalence deNOx and optimised IGT. Optimised IGT is based on 

the timing that MBT is achieved[30]. 

e) The GDI engine is operated in homogeneous combustion mode and is controlled fuel injection rate 

to achieve stoichiometric equivalence ratio (φ = 1, ±0.005). 

2.4. Data processing and analysis 

The net rate of heat release (RoHR or HRR) is computed using an average in-cylinder pressure value of 

300 cycles. HRR is calculated using MS Excel spreadsheet via Equation (2)[15]. 

𝑑𝑄

𝑑𝜃
=

𝛾

𝛾 − 1
𝑝
𝑑𝑉

𝑑𝜃
+

1

𝛾 − 1
𝑉
𝑑𝑃

𝑑𝜃
 (2) 

Where, dQ/dθ = net rate of heat release (J/θ), γ = coefficient of isentropic expansion, P = current in-

cylinder pressure (Pa), dV/dθ = rate of in-cylinder volume change (m3/θ), V = current in-cylinder volume 

(m3), and dP/dθ = rate of in-cylinder pressure change (Pa/θ). 

Mass fraction burned (MFB) of fuel in the combustion process is calculated using HRR spreadsheet 

which enables the observation of ignition delay, position where 50% of fuel mass is burned (MFB50), and 

combustion duration (CA1090). 

Meanwhile, Indicated Mean Effective Pressure (IMEP), Coefficient of Variance of IMEP (COV of 

IMEP), maximum in-cylinder pressure (Pmax), and location of Pmax are computed using an in-house 

developed MATLAB script. 

3. Results and discussions 

3.1. Effect of IGT 

Figure 2 illustrates the effect of IGT change on in-cylinder pressure profile and HRR. The increase in 

IGT demonstrates the rise of in-cylinder pressure and the left-shift toward an advanced combustion process. 

The advanced ignition timing results in rapid pressure development, hence the higher peak pressure. Note 

that subtle knocking noise is audible without special equipment at IGT of 13 CA bTDC and the obvious 

knocking noise can be heard at IGT of 15 CA bTDC. The rate of pressure change (dP/dθ) depicts the 

substantial dP/dθ prior TDC for IGT = 15 that suggests the potential knocking event. Although, this is 

considered a mild knocking compared to previous authors[31,32] who experimented on significantly higher 

engine load (IMEP > 15 bar). Additionally, the use of smoothed pressure trace has averaged-out the anomaly 

pressure rise from the in-cylinder pressure profile data acquired. Therefore, the dP/dθ curves in Figure 2 are 

visually smooth and knocking even is undetected. 

Increasing IGT results in combustion phasing toward advanced combustion which moves the centre of 
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combustion (MFB50 or CA50) closer to TDC as shown in Figure 3. IGT and position of MFB50 

demonstrate overall linear relationship which MBT IGT based on MFB50 = 10 CA aTDC[30] can be 

calculated from empirical linear Equation (3) derived from the experiment. 

𝑀𝐹𝐵50 = (−1.2531 ∙ 𝐼𝐺𝑇) + 21.683 

R2 = 0.9907 
(3) 

The calculated IGT optimised for MBT is 9.32 CA bTDC, however, according to the brake torque 

profile in Figure 4, the brake torque is far from peak value. Therefore, the IGT value of 12 CA bTDC is 

chosen based on Heywood’s assumption of MBT[6]. This results in MFB50 of approximately 7 CA aTDC 

which is considered in an optimal range for SI engine)[24]. 

The peak in-cylinder pressure (Pmax) is depicted in Figure 4 which increases with the advanced IGT 

value. Advancing IGT leads to early combustion of the intake mixture and produces high temperature and 

pressure hot gas closer to TDC, resulting in higher Pmax value. Note that higher Pmax and the shift Pmax 

toward TDC increases negative work of the engine and can reduce net positive work, hence the lower output 

brake torque. 

BTE reaches the peak value at MBT IGT (IGT = 12) as the result of optimal combustion while 

advancing or retarding ignition timing from this value indicates a noticeable BTE decrease. Overall, the 

combustion is sufficiently stable with COV of IMEP below 5% except for the condition of IGT = 6 which 

late combustion negatively affects the combustion stability. Meanwhile, the combustion efficiency 

demonstrates a slight drop over the increasing IGT. 

Advancing IGT results in a significant increase in NOx concentration which 46% NOx increase over 

IGT sweep of 9 CA as depicted in Figure 5. The increase of IGT results in a substantial rise of peak in-

cylinder pressure (Pmax) (as shown in Figure 4) which effectively increases the in-cylinder peak 

temperature. Hence, the formation of thermal NOx is enhanced and yields higher engine-out NOx 

concentration. 

 
Figure 2. Effect of IGT on Pcyl, dP/dθ & HRR. 
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Figure 3. Effect of IGT on combustion parameters. 

 

Figure 4. Effect of IGT on GDI engine parameters. 
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peak in-cylinder pressure that encourages hydrocarbon specie to get trap into the crevice volume[24] during 

expansion stroke and then gets expelled into exhaust gas stream during exhaust stroke. 

CO concentration exhibits a similar trend to that of THC concentration which reflects the combustion 

process incompleteness. Combustion efficiency (𝜂𝑐 or 𝜂𝑐𝑜𝑚𝑏 ) is defined in (4). 

𝜂𝑐 =
𝐶𝑂2

𝐶𝑂 + 𝐶𝑂2
× 100% (4) 

 
Figure 5. Effect of IGT on engine-out emissions. 
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Figure 6. Effect of H2O injection on combustion characteristics. 

 

Figure 7. Effect of H2O injection on combustion parameters. 
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by water vapour that replaces O2 and yields a lowered O2 concentration in the intake charge[32]. Hence, CO is 

prevented from complete oxidation into CO2. 

 
Figure 8. Effect of H2O injection on GDI engine performances. 

THC concentration moderately increases with the large quantity of water injected due to several reasons. 

Firstly, the lowered in-cylinder temperature caused by the charge cooling effect of water encourages flame 

quenching which increases unburned THC[22,25,35]. Water droplets that are unable to fully vaporise could 

impinge onto the cylinder liner and absorb heat which reduces cylinder wall temperature, hence the increased 

flame quench. Secondly, the lowered in-cylinder temperature combined with the O2-poor diluted intake 

charge reduces the post-combustion oxidation of unburned THC. Thirdly, water injection reduces flame 

laminar velocity as evidence of the longer ignition delay in Figure 7. This means that flame kernel 

development could be negatively affected and leads to the cycle-to-cycle variation[35]. Misfire could occur as 

the result of prolonged ignition delay. Although, the COV of IMEP suggests that the intensity of cycle-to-

cycle variation is still below the 5% threshold. Therefore, THC generated from cycle-to-cycle variation is 

insignificant compared to that of flame quenching. 

As CO and THC are relatively simpler to control than NOx because they can be oxidised effectively at 

lean AFR[36]. On the other hand, aftertreatment deNOx (e.g. TWC) requires ‘net reduction’ condition[37] (rich 

AFR = poor O2) to reduce NOx into harmless N2. NOx reduction technique that utilises period rich-lean AFR 

cycle usually results in fuel penalty. Therefore, the increase in CO and THC concentrations become 

secondary concerns when compared to worsening BTE (and BSFC) and combustion stability. 

3.3. Combined effect of IGT and H2O injection 

In the previous section, 30% rate of water injection is experimented at IGT = 12 with acceptable 

combustion stability and other combustion parameters considered. Afterwards, the effect of IGT on GDI 

0

5

10

15

20

25

30

35

40

80

82

84

86

88

90

0 1 2 3 4 5 6

%
B

T
E

 /
 P

m
ax

 (
b

ar
) 

/ 
%

C
O

V
 o

f 
IM

E
P

C
o

m
b

u
st

io
n

 e
ff

ic
ie

n
cy

 (
%

)

H2O injection duration (ms)

Comb_eff
BTE
Pmax
COV of IMEP

0.0

1.0

2.0

3.0

0

1000

2000

3000

0 1 2 3 4 5 6

C
O

 (
%

)

N
O

x
 /

 T
H

C
 (

p
p

m
)

H2O injection duration (ms)

NOx

THC

CO

0

25

50

75

100

0 1 2 3 4 5 6

d
eN

O
x

 (
%

)

H2O injection duration (ms)



 

11 

engines with H2O injection is investigated. IGT is increased until the same location of peak pressure (LPP) as 

MBT condition is met (approx. 12 CA aTDC). In this case, the IGT is swept from 12 CA aTDC to 19 CA 

aTDC which results in LPP of 12 CA aTDC ±0.2CA as shown in the traces of in-cylinder pressure in Figure 

9. The dP/dθ curves reveal that water injection is capable of suppressing knock by reducing the maximum 

rate of pressure rise by 35% from baseline condition. For comparison, at baseline condition in section 3.1, 

subtle audible knocking noise could be observed from the IGT = 13. Meanwhile, with 30% H2O injection, 

IGT can be adjusted to 19 CA bTDC without knocking. 

 

Figure 9. Effect of IGT and H2O injection on combustion characteristics. 

Overall, the effect of IGT on the combustion process presented in this section closely resembles the 

results in section 3.1. However, the main difference could be seen with the sensitivity of the effect of IGT on 

ignition delay. In absence of H2O, the advance in IGT by 3.8 CA yields 1 CA of ignition delay shortened as 

illustrated in Figure 10. Meanwhile, in the presence of H2O, it would take almost twice as much IGT 

advance to yield the same reduction of ignition delay duration. It can be concluded that the presence of H2O 

exhibits a noticeable negative effect on early flame development due to the charge dilution effect. 

Compounded with heat absorption by water’s vaporisation process (charge cooling effect), this results in the 

longer duration of flame kernel to initiate and stabilise[25]. The same trend of the sensitivity of IGT advance 

on MFB50 is observed as the effect of IGT on MFB50 is more pronounced for baseline conditions than that 

of conditions with H2O injection. 

 

Figure 10. Effect of IGT and H2O injection on combustion parameters. 
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Figure 11. Effect of IGT and H2O injection on GDI engine performances. 

While ignition delay and MFB50 values decrease with advanced IGT, combustion duration indicates a 

slight increase. The slight rising trend of CA1090 by IGT reported in this investigation demonstrates an 

opposite trend to most previous research works reviewed[22,24,25,31,32,34,35,38–40]. Still, there are researchers who 

reported that longer CA1090 caused by advancing IGT[41,42]. It is speculated that the dilution effect and 

cooling effect of water injection at specified condition (30% H2O injection) affects combustion phasing and 

can no longer be compensated by solely advancing IGT. 

In general, advancing IGT leads to the higher Pmax as described in section 3.1 which increases the in-

cylinder temperature. Consequently, NOx concentration marginally rises as the result of enhanced generation 

of thermal NOx. From the perspective of deNOx, advancing IGT slightly demerits the benefit of injecting 

water on deNOx. However, improvements on cycle-to-cycle variation, and THC emission could be observed 

in Figure 11. Therefore, advancing IGT can be performed at a relatively low penalty of deNOx performance. 

The increase in CO concentration with more advanced combustion indicates poorer combustion 

efficiency which strongly correlates to insufficient O2 environment in the combustion chamber. 30% H2O 

injection results in a noticeably increase in equivalence ratio (ϕ) up to 1.04 indicating a richer AFR which is 

caused by the charge dilution effect of water vapour that reduced O2 concentration in the intake charge. 

Another plausible reason for the elevated CO concentration is due to the early combustion leading to lower 

exhaust gas temperature compared to that of late combustion. Consequently, the post-combustion oxidation 

of CO into CO2 is less pronounced. 

3.4. Comparison between EGR and H2O injection 

As deNOx performance baseline by H2O injection has been established in section 3.1 and 3.2, it is 

crucial to obtain a better understanding of its merits in comparison to proven NOx control techniques: EGR. 
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10% EGR dilution rate is chosen as a benchmark against H2O injection technique in this investigation. The 

comparison between the two deNOx methods is performed based on the same value of deNOx for a fair 

comparison. Empirical equations of NOx emission characteristic obtained from H2O injection experiment 

(Figure 8) is as shown in Equation (5). 

NOx = −2.6842x4 + 36.887x3 − 99.6x2 − 526.04x + 2450.1 

R2 = 0.9997 

Note: x = H2O injection duration in ms 

(5) 

At 10% EGR rate and IGT = 12, the deNOx is 82%. NOx concentration at baseline condition is 2400 

ppm, hence the 82% NOx reduction yields 1968 ppm NO reduced (432 ppm NOx remains). Using Equation 

(5), the author obtains the H2O injection duration of 3.94 ms. Therefore, the results from H2O injection 

experiment condition of 4 ms (corresponding to 20% W/F) is chosen to compare with the results of 10%EGR. 

Details of parameters for the comparison are shown in Table 3. 

Table 3. Comparison conditions between EGR and H2O injection. 

Parameter EGR H2O injection 

Dilution rate/injection rate 10% 20% W/F (4.0 ms) 

IGT baseline 12 CA bTDC 12 CA bTDC 

IGT optimised* 15 CA bTDC 18 CA bTDC 

*IGT is adjusted to obtain same LPP as baseline condition (LPP = 12 CA aTDC, approx.). 

Figure 12 illustrates the comparison of in-cylinder pressure traces, dP/dθ curves, and HRR curves 

between GDI engine baseline, 10%EGR, and 20% H2O injection. Without the IGT optimisation, both peak 

pressure and dP/dθ of EGR and H2O injection are remarkably lower than that of baseline condition. In-

cylinder pressure trace of H2O injection also indicates a further peak pressure reduction compared to that of 

EGR. This suggests that at the same %deNOx, H2O injection would be more potent in suppression knocking 

compared to EGR. 

With optimised IGT, the new pressure traces for either EGR and H2O injection are nearly identical to 

baseline condition in terms of pressure magnitude and location. However, the peak dP/dθ curves for EGR 

and H2O injection are marginally lower than baseline which specifies the lower rate of temperature rise in the 

combustion chamber. The HRR curves between baseline conditions, EGR @ IGT = 15, and H2O injection @ 

IGT = 18, further confirms that heat is released at a substantially lower rate which results in thermal NOx 

inhibition as shown in the relative emissions in Figure 13. 

Without IGT optimisation (IGT = 12) (denoted ‘MBT’), 10%EGR yields NOx reduction of 82% while 

optimised IGT (denoted ‘opt’) shows NOx reduction of 77% due to higher dP/dθ and Pmax (Figure 13) that 

generates more NOx. 

DeNOx strategy using H2O injection demonstrates significantly better CO emission compared to EGR. 

This means EGR has more aggressive dilution which in turn replaces more O2 molecules and causes O2 

deprivation combustion process. On the other hand, H2O injection utilises both dilution effect and charge 

cooling effect to achieve the same NOx reduction. Meanwhile, H2O injection generates considerably higher 

THCs than that of EGR as the results of poorer early flame kernel development as indicated by the longer 

ignition delay in Figure 13. MBF50 and CA1090 are comparable for both H2O injection and EGR when IGT 

is optimised. 
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Figure 12. Combustion parameters comparison between EGR and H2O injection. 

Overall, H2O injection technique demonstrates a promising performance as NOx reduction techniques 

compared to advanced and matured technique like EGR. 

 

Figure 13. Comparison between EGR and H2O injection 
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NOx and knocking problem. The results indicate that water injection is capable of simultaneously 

suppressing NOx and knocking while maintaining reasonable brake thermal efficiency and combustion 

stability in comparison to that of EGR technology. Water injection technique has potential to be employed in 

boarder commercial road vehicles as a clean ICE technology during the transition into electrification 

transports. Future work will be devoted to a deeper understanding of the effect of water injection on 

particulate matter emissions and the aftertreatment system. 
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