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ABSTRACT 
Due to polymorphism and complex crystal structure, compounds of the argyrodite family and phases based on 

them exhibit several interesting functional properties, such as thermoelectric, photoelectric, optical, as well as ionic 
conductivity for Cu+ and Ag+ cations. The paper presents the results of the study of phase equilibria in the Ag8SiSe6-
Ag8SiTe6 system by DTA, XRD, and SEM methods. Refined data on the melting temperature (1278 K) and 
polymorphic transitions (315 K and 354 K) of the Ag8SiSe6 compound are presented. The crystallographic parameters 
of LT-Ag8SiSe6 (Cubic, F-43m, a = 1.0965 nm) and IT-Ag8SiSe6 (Cubic, P4232, a = 1.0891 nm) are also determined. It 
has been established that the investigated system is quasi-binary and its phase diagram is characterized by the formation 
of a continuous series of substitutional solid solutions between HT-Ag8SiSe6 and Ag8SiTe6. This process is 
accompanied by a strong decrease in the temperatures of polymorphic transformations of Ag8SiSe6, which leads to the 
stabilization of the ion-conducting cubic phase at room temperature in the >10 mol% Ag8SiTe6 compositions area. The 
crystal lattice parameters of the synthesized solid solutions are calculated by indexing the powder diffraction patterns. 
The stabilization of the high-temperature cubic phase at room temperature achieved by us presents new opportunities 
for the development of environmentally friendly thermoelectrics and ion-electronic conductors based on silicon 
argyrodites with desired composition and properties. 
Keywords: silver-silicon chalcogenides; argyrodite-like compounds; differential thermal analysis; X-ray diffraction 
analysis; phase equilibria; solid solutions; polymorphic transformation 

1. Introduction
Silver and copper chalcogenides, due to their electronic, optical

and mechanical properties, are good environmentally friendly 
materials for a wide range of applications, for example, as 
thermoelectric and photovoltaic materials, ionic conductors[1–7]. 
Recent studies show the promise of using them also in biomedicine[8,9] 
and for photoelectrochemical water splitting[10–12]. 

Among these materials, an important place is occupied by 
compounds with the general formula AI

8BIVX6 (AI-Cu, Ag; BIV-Si, Ge, 
Sn; X-S, Se, Te) that belong to the argyrodite family. These 
compounds are of particular interest due to their thermoelectric 
properties[13–20], photosensitivity[21–23], and low-temperature phase 
transition[6,24]. These materials can be used in the production of 
hydrogen, as well as in a variety of applications such as ion-selective 
electrodes, solid-state electrolytes in various types of electric batteries, 
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electrochemical sensors, and displays[25–32]. According to some papers[14,17,31,32], the presence of mixed 
electronic-ionic conductivity is one of the significant factors that positively impact the thermoelectric 
characteristics of these materials. 

A set of reliable data on phase equilibria and thermodynamic data play an important role in choosing the 
conditions for the directed synthesis of new materials[33–35]. Systems in which solid solutions are formed are 
of particular interest, since varying the composition can change the properties of the phases[36–39]. The 
constructed phase diagrams of such systems serve as the basis for choosing the composition of melts for 
growing single crystals of solid solutions of a given composition by the directed crystallization method. 

Previously, the results of studies of systems composed of copper or silver chalcogenides and 
characterized by the formation of continuous or wide areas of solid solutions were presented[40–46]. 

In recent years, silicon-containing argyrodites, especially Ag8SiSe6 and Ag8SiTe6, have attracted 
particular interest as eco-friendly thermoelectric and ion-conducting materials[16,18,19]. 

In this work, in order to obtain new silicon argyrodites of variable composition, we studied phase 
equilibria in the Ag8SiSe6-Ag8SiTe6 system. 

The initial compounds of the above-mentioned system have been studied in many works. The Ag8SiSe6 
melts congruently. In various papers, very different values of the melting point of this compound are given. 
Thus, this compound melts at 1203 K[24,47]. In other papers, the following data are given: 1258 K[48], 1268 
K[49]. The phase diagram presented by Jiang et al.[16] does not indicate a certain temperature of the distectics 
point, but only a possible melting temperature range (1203–1263 K). 

The Ag8SiSe6 compound has at least 3 crystalline modifications[16,19,24,47]. The high-temperature (HT) 
modification, like all other compounds of the argyrodite family, crystallizes in a face-centered cubic 
structure (Sp.gr. F-43m) with complete disordering of the cationic sublattice. According to various authors, 
HT-Ag8SiSe6 has the following lattice periods: a = 1.097 nm[24,47], a = 1.09413(1) nm[19]. The intermediate 
modification (IT) has a simple-cubic structure (Sp.gr. Р213[19] or P4232 with a lattice constant a = 1.087 
nm[24]). The IT-Ag8SiSe6 modification is characterized by partial localization of silver ions[19]. Data on the 
structure of the low-temperature modification (LT-Ag8SiSe6) are contradictory. LT-Ag8SiSe6 has a tetragonal 
structure (Sp.gr. I-4m2, a = 0.7706, b = 1.10141 nm[24,47]). However, Jiang et al.[16] noted that the powder 
diffraction pattern of LT-Ag8SiSe6 is poorly indexed in this structure. They showed that the diffractogram 
contains two series of reflections, and most of the peaks are indexed in the orthorhombic structure (Sp.gr 
Pmn21). Weak peaks near 33.5, 34.7 and 37.0 correspond to orthorhombic RT-Ag2Se[16]. 

The Ag8SiTe6 melts congruently at 1143 K[24] and has two polymorphic transformations at 195 and 263 
K[50]. The period of cubic lattice (Sp.gr. F-43m is a = 1.15225 nm[50]). 

Based on the literature data, it can be assumed that continuous solid solutions can form between the 
high-temperature modification of HT-Ag8SiSe6 and Ag8SiTe6. 

2. Materials and methods 
For the synthesis of Ag8SiSe6 and Ag8SiTe6 compounds, the high-purity elements (at least 99.999 wt.% 

purity) were used. The synthesis was carried out in ampoules evacuated to 10−2 Pa. To avoid a reaction 
between silicon and the walls of the quartz ampoule, the inner walls of the tube were graphitized by pyrolysis 
of toluene. 

Given the high vapor pressure of selenium at the melting point of Ag8SiSe6
[51], this compound was 

synthesized in an in inclined two-zone furnace. Stoichiometric amounts of elementary components were 
loaded into a quartz ampoule (~13–15 cm long and ~1.5 cm in diameter), which, after evacuation and sealing, 
was placed in an inclined (~30°) tube furnace. Two-thirds of the ampoule was in the furnace, and the rest of 
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the upper part was outside the furnace. The furnace was heated to 1300 K. At the beginning of the 
experiment, selenium evaporates and accumulates in the upper “cold” zone of the ampoule, from where it 
returned to the lower “hot” zone again. To prevent the explosion of the ampoule due to overheating of the 
“cold” zone, the latter was cooled with water. As the components interacted, the amount of selenium in the 
upper part of the ampoule decreased, which could be observed visually. After the interaction of a larger mass 
of components, the ampoule was completely placed in the furnace. 

Synthesis of the Ag8SiTe6 compound was carried out at 1200 K. 

DTA and XRD analysis were used for the identification of the synthesized compounds. 

Figure 1 presents the DTA data of the Ag8SiSe6 and Ag8SiTe6 compounds. As can be seen, these 
compounds melt at 1278 K and 1143 K. On the heating thermogram of the Ag8SiSe6 compound, there are 
also endothermic effects at 315 K and 354 K, corresponding to the polymorphic transitions. The data for 
Ag8SiTe6 compounds are in agreement with the literature[24]. According to our experimental data, the melting 
point of Ag8SiSe6 differs significantly from those presented by the authors[24,47,48] and is closer to the data of 
Piskach et al.[49]. The temperature of the low-temperature phase transition (315 K) coincides with the data of 
Gorochov[24] and Hofmann[47] while the temperature of the second one (354 K) is slightly lower than given 
by Studenyak et al.[30]. 

 
Figure 1. Heating DTA curves of the Ag8SiSe6 and Ag8SiTe6 compounds. 

Intermediate samples of the studied system were prepared by melting stoichiometric amounts of 
pre-synthesized and identified compounds in evacuated quartz ampoules. The alloys were heated to 1300 K 
and kept at this temperature for about 1 h; then the furnace temperature was reduced to 800 K and the 
ampoules were kept in it for about 500 h. For some compositions, two series of alloys were prepared: the 
first series after annealing was quenched in ice water, and the second series of samples was slowly cooled in 
a furnace to room temperature. 

Figure 2 shows the powder diffraction patterns of the synthesized compounds. The X-ray diffraction 
pattern of Ag8SiTe6 is in agreement with the literature data[24,52]. The diffraction pattern of Ag8SiSe6 is almost 
completely indexed in a simple-cubic lattice with Sp.gr. P4232. Some non-indexed very weak reflection lines 
do not apply to Ag2Se, SiSe2, and initial elemental components. Taking into account the available literature 
data[16,19], it can be assumed that the synthesized sample is IT-Ag8SiSe6 with an insignificant part of LT-
Ag8SiSe6. This assumption is supported by the DTA data, according to which the obtained sample has a clear 
isothermal melting peak, which is possible only if its composition coincides with the stoichiometry of 
Ag8SiSe6. 
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The obtained alloys were investigated by using DTA, XRD, and SEM methods. 

The DTA curves were recorded using a NETZSCH 404 F1 Pegasus system with chromel-alumel 
thermocouples in the range of temperatures from room temperature to ∼1400 K at a heating rate of 10 K⋅min−1 
and standard uncertainty ±2°. Temperatures of thermal effects were taken mainly from the heating curves. 
But in some samples, thermal effects were taken from cooling curves to determine the onset of crystallization. 
As a reference material, in (429 K), Tl (576 K), Zn (692 K), Sb (904 K), KCl (1043 K), Ag (1236 K), as well 
as Cu (1358 K) with an accuracy of ±1° were used. 

 

 
Figure 2. Powder diffraction patterns of the synthesized Ag8SiSe6 and Ag8SiTe6 compounds. 

X-ray powder diffraction data were collected at room temperature using a Bruker D8 ADVANCE 
diffractometer (with Cu-Kα1 radiation) within 2θ = 10° to 70°. The unit cell parameters were calculated by 
indexing powder patterns using Topas V3.0 software. 

SEM-EDS analyses were done by Tescan Vega 3 SBH Scanning Electron Microscope equipped with 
Thermo Scientific Ultra Dry Compact EDS detector. 
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3. Results and discussion 
Analysis of the powder diffraction patterns of both series of synthesized alloys with compositions of 

10–90 mol% Ag8SiTe6 showed that they all have diffraction patterns characteristic for the HT-cubic F-43m 
space group. Figure 3 shows powder diffractograms of alloys slowly cooled after annealing. As can be seen, 
all intermediate alloys have diffraction patterns that are qualitatively different from IT-Ag8SiSe6 and are 
similar to the diffraction pattern of Ag8SiTe6. Some shift of the reflection lines with increasing tellurium 
content towards smaller angles is associated with an increase in the lattice period during the formation of 
solid solutions. 

 
Figure 3. Powder diffractograms of some alloys of the Ag8SiSe6-Ag8SiTe6 system slowly cooled after annealing. 

Table 1 presents the crystallographic data of slowly cooled after annealing and quenched from 800 K both 
initial compounds and alloys of the Ag8SiSe6-Ag8SiTe6 system, and Figure 4 shows a graph of the 
concentration dependence of the cubic lattice period. As can be seen, for both series of alloys, the lattice 
period is an almost linear function of the composition, i.e., Vegard’s law is obeyed. It should be noted that 
the values of the lattice constant of cubic phases at room temperature are somewhat smaller than those of 
alloys quenched from 800 K, which is apparently due to the thermal expansion of the crystal lattice of 
quenched samples compared to room temperature. 

Table 1. Crystallographic parameters of phases in the Ag8SiSe6-Ag8SiTe6 system. 

Composition, mol% 
Ag8SiTe6 

Syngony, Sp.gr., lattice parameters, nm 

Room temperature Quenched from 800 K 

Ag8SiSe6 Cubic, P4232, a = 1.0891(3) Cubic, F-43m, a = 1.0965(3) 

10 Cubic, F-43m, a = 1.1018(3) -” -, a = 1.1023(3) 

20 -” -, a = 1.1070(4) -” -, a = 1.1074(4) 

40 -” -, a = 1.1175(3) -” -, a = 1.1180(3) 

50 -” -, a = 1.1230(4) - 

60 -” -, a = 1.1293(3) -” -, a = 1.1298(3) 

80 -” -, a = 1.1405(4) -” -, a = 1.1411(4) 

Ag8SiTe6 -” -, a = 1.1524(4) -” -, a = 1.1528(3) 
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Figure 4. Dependence of the period of the cubic lattice on the composition for solid solutions of the Ag8SiSe6-Ag8SiTe6 system. 

Table 2 presents the DTA data of the heating curves for the alloys slowly cooled after annealing. 
Figure 5 shows the phase diagram constructed based on these data. As can be seen, the system is quasi-
binary and is characterized by the formation of a continuous series of solid solutions (γ-phase) between HT-
Ag8SiSe6 and Ag8SiTe6. On the liquidus and solidus curves, the temperature changes monotonically between 
the melting points of initial compounds, and the melting temperature range does not exceed 15°. On the DTA 
curves of the alloys, in contrast to pure Ag8SiSe6, we did not detect low-temperature thermal effects 
reflecting its polymorphic transitions. This, taking into account the XRD data, suggests that the formation of 
solid solutions is accompanied by a strong decrease in the temperatures of polymorphic transitions of 
Ag8SiSe6 (315 K and 354 K) and their transition to the temperature range below room temperature in the 
composition range of 0–10 mol% Ag8SiTe6. 

Table 2. The DTA results for the alloys of the Ag8SiSe6-Ag8SiTe6 system. 

Composition, mol% Ag8SiTe6 Thermal effects, K 

Pure-Ag8SiSe6 315; 354; 1278 

10 1262 

20 1250–1264 

40 1222–1237 

50 1210–1225 

60 1198–1212 

80 1168–1278 

90 1158–1165 

Pure-Ag8SiTe6 1143 

 
Figure 5. Phase diagram of the Ag8SiSe6-Ag8SiTe6 system. 
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The character of solid-phase equilibria in the Ag8SiSe6-Ag8SiTe6 system was also confirmed by the 
SEM method. It was shown that all synthesized samples are single-phase. Figure 6 presents SEM-EDS data 
of annealed and slowly cooled alloy with a composition of 20 mol% Ag8SiTe6. As can be seen, this alloy is 
single-phase and its elemental composition practically coincides with the nominal Ag8SiSe4.8Te1.2. 

 
Figure 6. SEM-EDS data for the alloy with Ag8SiTe1.2Se4.8 composition. (A) SEM image; (B) atomic composition of elements. 

4. Conclusion 
We present new data on phase equilibria in the Ag8SiSe6-Ag8SiTe6 system, obtained by DTA, XRD and 

SEM are presented. The temperatures of melting and polymorphic transitions, as well as the crystallographic 
parameters of the HT- and IT- modifications of the Ag8SiSe6 compound, for which contradictory literature 
data were available, are refined. 

We have shown that the Ag8SiSe6-Ag8SiTe6 system is quasi-binary. Its T-x diagram in the high-
temperature region is characterized by the formation of continuous solid substitution solutions between HT- 
Ag8SiSe6 and Ag8SiTe6. The formation of solid solutions is accompanied by a strong decrease in the 
temperatures of Ag8SiSe6 polymorphic transformations. This leads to the stabilization of the ion-conducting 
cubic phase with Sp.gr. F-43m at room temperature in a wide range of compositions (>10 mol% Ag8SiTe6). 
According to powder diffraction patterns, the crystal lattice parameters of the synthesized solid solutions 
were calculated. It is shown that the dependence of the cubic lattice period on the composition obeys 
Vegard’s rule. 

The obtained new data open up wide opportunities for obtaining environmentally friendly 
thermoelectrics and ion-electronic conductors based on silicon argyrodites with controlled composition and 
properties. 
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