Table of Contents
This study investigates the relationship between hydrological processes, watershed management, and road infrastructure resilience, focusing on the impact of flooding on roads intersecting with streams in River Nile State, Sudan. Situated between 16.5° N to 18.5° N latitude and 33° E to 34° E longitude, this region faces significant flooding challenges that threaten its ecological and economic stability. Using precise Digital Elevation Models (DEMs) and advanced hydrological modeling, the research aims to identify optimal flood mitigation solutions, such as overpass bridges. The study quantifies the total road length in the area at 3572.279 km, with stream orders distributed as follows: First Order at 2276.79 km (50.7%), Second Order at 521.48 km (11.6%), Third Order at 331.26 km (7.4%), and Fourth Order at 1359.92 km (30.3%). Approximately 27% (12 out of 45) of the identified road flooding points were situated within third- and fourth-order streams, mainly along the Atbara-Shendi Road and near Al-Abidiya and Merowe. Blockages varied in distance, with the longest at 256 m in Al-Abidiya, and included additional measurements of 88, 49, 112, 106, 66, 500, and 142 m. Some locations experienced partial flood damage despite having water culverts at 7 of these points, indicating possible design flaws or insufficient hydrological analysis during construction. The findings suggest that enhanced scrutiny, potentially using high-resolution DEMs, is essential for better vulnerability assessment and management. The study proposes tailored solutions to protect infrastructure, promoting sustainability and environmental stewardship.
The modification of the Turia River’s course in the 1960s marked a pivotal transformation in Valencia’s urban landscape, evolving from a flood protection measure into a hallmark of sustainable urban development. However, recent rainfalls and flooding events produced directly by the phenomenon known as DANA ((Isolated Depression at High Levels) in October 2024 have exposed vulnerabilities in the infrastructure, particularly in the rapidly urbanized southern areas, raising questions about the effectiveness of past solutions in the context of climate change and urban expansion. As a result of this fragility, more than 200 deaths have occurred, along with material losses in 87 municipalities, whose industrial infrastructure accounts for nearly one-third of the economic activity in the Province of Valencia, valued at 479.6 million euros. This paper presents, for the first time, a historical-document-based approach to evaluate the successes and shortcomings of Valencia’s flood management strategies through policy and spatial planning analysis. Also, this paper remarks the ongoing challenges and potential strategies for enhancing Valencia’s urban resilience, emphasizing the need for innovative water management systems, improved drainage infrastructure, and the renaturalization of flood-prone areas. The lessons learned from Valencia’s experience in 1957 and 2024 can inform future urban planning efforts in similar contexts facing the dual pressures of environmental change and urbanization.
The hydroclimatological monitoring network in Haiti was inadequate before 2010 due to a lack of meteorological stations and inconsistent data recording. In the aftermath of the January 2010 earthquake, the monitoring network was reconstructed. In light of the prevailing circumstances and the mounting necessity for hydroclimatological data for water resource management at the national level, it is of paramount importance to leverage and optimize the limited available data to the greatest extent possible. The objective of this research is to develop regional equations that facilitate the transfer of climatic data from climatological stations to locations with limited or absent data. Physiographic and climatological characteristics are used to construct the hydrologic information transfer equations for sites with limited or no data. The validity of the regionalization techniques was assessed using cross-validation. The results enable estimation of hydrological events through the specific patterns of behavior of each region of the country, identified in cartography of homogeneous zones.