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Abstract: The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized 

geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability 

in analyzing large-scale remote sensing datasets. This study appraisals the application of 

advanced AI techniques, including machine learning and deep learning models such as 

Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the 

identification and classification of geological formations and mineral deposits. The manuscript 

provides a critical analysis of AI’s capabilities, emphasizing its current significance and 

potential as demonstrated by organizations like NASA in managing complex geospatial 

datasets. A detailed examination of selected AI methodologies, criteria for case selection, and 

ethical and social impacts enriches the discussion, addressing gaps in the responsible 

application of AI in geosciences. The findings highlight notable improvements in detecting 

complex spatial patterns and subtle spectral signatures, advancing the generation of precise 

geological maps. Quantitative analyses compare AI-driven approaches with traditional 

techniques, underscoring their superiority in performance metrics such as accuracy and 

computational efficiency. The study also proposes solutions to challenges such as data quality, 

model transparency, and computational demands. By integrating enhanced visual aids and 

practical case studies, the research underscores its innovations in algorithmic breakthroughs 

and geospatial data integration. These contributions advance the growing body of knowledge 

in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and 

impactful future applications of AI in geological and mineral mapping. 
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1. Introduction 

In an era defined by rapid technological advancements, the convergence of Big 

Earth Data and Artificial Intelligence (AI) is revolutionizing geological and mineral 

mapping, offering transformative potential for the geosciences and resource 

management sectors.  

Big Earth Data, characterized by its vast, multi-dimensional, and complex nature, 

provides unparalleled opportunities for analyzing Earth’s surface and subsurface 

dynamics [1–3]. When coupled with AI and machine learning techniques, this data can 

be translated into actionable insights, facilitating deeper understanding of geological 

formations, mineral distributions, and critical Earth processes. Traditional geological 

mapping approaches, while reliable, have relied on labor-intensive methods such as 

manual interpretation and extensive fieldwork.  
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These processes, though effective, are often time-consuming, expensive, and 

constrained in scope [4–6]. The integration of AI into remote sensing and Big Earth 

Data analysis marks a paradigm shift, enabling the development of efficient, accurate, 

and scalable mapping techniques.  

AI-powered models, particularly machine learning and deep learning algorithms, 

can identify subtle patterns and anomalies within massive datasets—details that might 

otherwise go unnoticed by human analysts [7–9]. This capability significantly 

enhances the precision and reliability of geological interpretations and fosters 

innovative solutions for industries such as mining, environmental management, and 

natural resource exploration. 

This study provides a comprehensive analysis of the integration of AI with Big 

Earth Data in geological and mineral mapping. It delves into the critical criteria for 

selecting AI methodologies, evaluates their performance in comparison to traditional 

techniques, and examines the ethical and social implications of their application [10–

12]. Notably, it highlights the role of organizations like NASA in advancing the use of 

AI for geospatial data analysis, demonstrating the current relevance and future 

potential of these technologies. Additionally, the paper incorporates case studies and 

quantitative analyses to showcase practical applications and performance metrics, 

emphasizing innovation in algorithms and integration methods. 

By addressing challenges such as data quality, computational demands, and 

model transparency, this research aims to present actionable insights for responsible 

and equitable applications of AI in geosciences. Through a balanced discussion of the 

opportunities, challenges, and ethical considerations, this study seeks to advance the 

understanding of how AI and Big Earth Data can contribute to more sustainable, 

efficient, and informed approaches to geological exploration and resource 

management. 

2. Methods and experimental analysis 

This study adopts a multi-faceted approach combining Big Earth Data, machine 

learning algorithms, and remote sensing technologies to advance geological and 

mineral mapping. The methodology is systematically structured into the following 

phases: data acquisition, data preprocessing, model development, validation, and 

application to case studies. To ensure clarity and rigor, the selected AI techniques and 

case studies are elaborated upon, emphasizing their innovative contributions and 

quantitative evaluation metrics. 

The data acquisition phase involves collecting extensive Big Earth Data from 

diverse sources, including satellite imagery, airborne sensors, and geospatial 

databases. These datasets include multispectral and hyperspectral images, digital 

elevation models (DEMs), geological surveys, and other relevant geospatial data. 

Publicly available datasets from institutions like the United States Geological Survey 

(USGS), European Space Agency (ESA), and Copernicus Open Access Hub are 

prioritized to ensure comprehensive spatial and temporal coverage. The selection 

criteria for these datasets focus on their relevance to the geological formations and 

mineral deposits under study, aligning with the research’s specific objectives and case 

study requirements.  
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For example, regions with active exploration and significant geological 

complexity were prioritized to demonstrate the robustness of the methodology. Given 

the complexity and heterogeneity of Big Earth Data, data preprocessing is a critical 

component of the methodology. Preprocessing tasks include data cleaning to remove 

noise and artifacts, normalization to standardize data ranges, and transformation to 

enhance data interpretability. Techniques such as median filtering and principal 

component analysis (PCA) are applied to improve data quality and reduce redundancy.  

For multispectral and hyperspectral datasets, band selection and dimensionality 

reduction are conducted, focusing on spectral bands most relevant to mineral 

detection. Geospatial data undergo re-projection and resampling to ensure uniformity 

across datasets, and diverse sources are integrated through spatial alignment and 

temporal synchronization. This unified and high-quality dataset forms the foundation 

for subsequent AI-driven analysis. The model development phase involves tailoring 

machine learning algorithms for geological and mineral mapping. Both supervised and 

unsupervised learning methods are employed to address different analytical needs. 

Supervised learning algorithms, such as Random Forest (RF) and Support Vector 

Machines (SVM), are used for classification tasks, while unsupervised methods like 

k-means clustering and self-organizing maps (SOM) are utilized for pattern detection 

and anomaly identification. For more complex feature extraction and spatial pattern 

recognition, deep learning models, particularly Convolutional Neural Networks 

(CNNs), are deployed. The models are trained using labeled datasets where ground 

truth data, such as known mineral deposits and geological features, provide validation. 

The training process includes iterative optimization of model parameters to achieve 

high accuracy and generalization capabilities. 

To address challenges related to model interpretability and performance, the 

methodology incorporates quantitative analysis of model outputs. Metrics such as 

accuracy, precision, recall, and F1-score are calculated to evaluate model performance. 

Additionally, confusion matrices and receiver operating characteristic (ROC) curves 

are used to assess classification reliability. Comparative analyses with traditional 

geological mapping methods, such as manual interpretation and field surveys, 

highlight the advancements achieved through AI integration. 

The validation process employs cross-validation techniques, where the dataset is 

partitioned into training and testing subsets to minimize overfitting and enhance 

reliability. Independent datasets from different geographical regions are used to further 

validate the models, demonstrating their robustness across varying geological 

contexts. Quantitative performance comparisons with traditional methods are 

conducted to underscore the improvements in efficiency and precision. 

Finally, the application to real-world case studies provides practical insights into 

the methodology’s effectiveness. Selected regions with known geological 

complexities and significant mineral potential, such as areas with diverse lithological 

compositions or active mining zones, serve as test cases. The AI-driven models 

analyze these regions to identify mineral-rich zones and geological features, with 

results compared to existing geological maps and field data. This phase includes 

detailed quantitative performance metrics and visual representation of results through 

enhanced charts, graphs, and geospatial visualizations to effectively convey complex 

findings. 
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The methodology also integrates a discussion of the ethical and social 

considerations, addressing issues like data privacy, environmental sustainability, and 

equitable access to AI technologies in geological exploration. By highlighting these 

dimensions, the research emphasizes responsible innovation and the need for balanced 

technological advancements. Through this comprehensive and systematic 

methodology, the study not only demonstrates the feasibility of integrating Big Earth 

Data and AI for geological and mineral mapping but also establishes a framework that 

is replicable and adaptable for future research in geosciences. The focus on 

quantitative analysis, innovative algorithms, and practical applications ensures a 

credible and impactful contribution to the field. 

3. Background research and investigative exploration towards 

available knowledge 

Earth observation (EO) involves the interconnected systematic collection of data 

regarding both the physical, chemical, and also the biological systems of the Earth. 

This process can be further executed through various remote-sensing technologies, 

including satellites that constantly orbit the Earth, as well as all the associated direct-

contact sensors which are located on ground-based or airborne platforms, such as the 

weather stations and various types of balloons. The overall information gathered 

through EO is very crucial for monitoring and assessing all the changes in both the 

natural and the built environments [1–3]. The term “Earth observation” has many types 

of different connotations depending on the particular region. In the areas of Europe, it 

often refers specifically to the satellite-based remote sensing, though it can also 

include in situ and the airborne observations. In the areas of the United States, the term 

“remote sensing” has been in use since the early 1960s and broadly refers to any 

observation method that utilizes types of remote sensing technology, whether it be 

from space, air, or any other type of ground-based platforms [4–6].  

Recently, the acronym “Satellite Remote Sensing” (SRS) has begun appearing in 

literature as a more precise term for satellite-based observations. EO encompasses a 

wide array of activities, ranging from numerical measurements taken by instruments 

like thermometers and seismometers to photos and radar images captured by satellites 

or ground-based sensors. The data collected through these various means can be 

processed into decision-support tools such as maps and models, which are invaluable 

in a multitude of applications [7–9]. These include numerous weather forecasting, 

tracking inclusion for biodiversity and wildlife trends, measuring types of land-use 

changes like deforestation, and also heavily monitoring natural disasters such as fires, 

floods, and earthquakes.  

The field of Earth observation is rapidly evolving at a high pace, with the 

continuous advancements in both the quality and quantity of the many types of data 

collected. The deployment of new remote-sensing satellites, along with their 

associated increasingly sophisticated in situ instruments located on the ground, in the 

air, and in water bodies, has resulted in comprehensive, nearly real-time observations. 

These technological advancements have become increasingly very much important in 

light of the significant impact modern human civilization has on the planet in terms of 

digital computing.  
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EO plays a critical role in mitigating these effects, such as monitoring geohazards, 

and offers opportunities to enhance social and economic well-being. Earth observation 

is a broad and multifaceted field that combines various technologies and methods to 

monitor the Earth’s systems. Its applications are diverse and very much essential for 

understanding and responding to the rapid environmental changes, managing natural 

resources, and improving overall societal welfare [10–12]. 

A Digital Elevation Model (DEM) is basically a 3D computer graphics 

representation of the elevation data used to depict terrain or surface features of planets, 

moons, or asteroids. DEMs are more extensively used in terms of geographic 

information systems (GIS) as the foundation for digitally produced relief maps [13–

15]. The term “DEM” is also often used many times interchangeably with Digital 

Surface Models (DSM) and Digital Terrain Models (DTM).  

While DSMs include natural and man-made features like tree canopies and 

buildings, DTMs focus solely on representing the bare ground surface, making them 

crucial for applications such as flood modeling, geological studies, and land-use 

analysis. Terminology in the field of digital elevation modeling varies.  

DEM is a broad term that can encompass both DSMs and DTMs, depending on 

the context. DSMs mainly represent the Earth’s surface, including objects like 

buildings and trees, while DTMs represent only the bare ground. The term DEM is 

often used generically, without specifying whether it refers to DSMs or DTMs. The 

creation of DTMs typically involves filtering out surface objects from high-resolution 

DSMs through a process called “bare-earth extraction”. 

There are a lot of different types of DEMs, which can be very much represented 

either as a raster grid (often referred to as a heightmap when dealing with elevation) 

or as a vector-based Triangular Irregular Network (TIN). DEMs can be created using 

various techniques, including photogrammetry, lidar, and radar. Data for DEMs is 

commonly gathered through remote sensing methods, although traditional land 

surveying can also be used, especially in areas where remote sensing is less effective. 

Rendering of DEM data often involves visual forms like contoured topographic maps 

or color-coded elevation maps [16–18].  

In some cases, oblique views are created to provide a more intuitive visualization 

of the terrain, with techniques like “vertical exaggeration” used to highlight subtle 

elevation changes. However, the use of vertical exaggeration is sometimes criticized 

for potentially misleading viewers about the actual landscape. 

Production methods for DEMs have evolved a lot over time. While the early 

methods mainly relied on interpolating contour maps from land surveys, modern 

DEMs are mainly primarily generated using remote sensing technologies such as radar 

and satellite imagery. For instance, interferometric synthetic aperture radar (InSAR) is 

a very powerful technique that allows for the creation of DEMs over large types of 

areas with much high resolution.  

Satellite missions like SPOT, ERS, SRTM, and ASTER have provided significant 

contributions to the global availability of DEM data. In planetary mapping, DEMs 

have become invaluable tools, especially through the use of orbital altimetry. 

Instruments much like the Mars Orbiter Laser Altimeter (MOLA) and the Lunar 

Orbital Laser Altimeter (LOLA) have been very much instrumental in terms of 

mapping the topography of Mars and the Moon, respectively.  
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Accuracy is a critical aspect of DEMs, influenced by factors such as terrain 

roughness, sampling density, grid resolution, and the algorithms used for interpolation 

and terrain analysis [19–21]. DEM quality is typically assessed by comparing DEMs 

from different sources. High-quality DEMs are essential for accurate modeling of 

terrain-related phenomena. DEMs have a wide range of applications, including 

geomorphology, hydrology, infrastructure design, and 3D visualizations. They are 

used for modeling water flow, creating relief maps, planning flights, and even for 

precision farming. DEMs are also used in engineering, satellite navigation, and 

archaeology, among other fields.  

Sources of DEM data vary by a great margin globally. Free global DEM datasets 

like FABDEM and GTOPO30 provide a very wide coverage, although the resolution 

and quality can vary by a great amount significantly. Higher resolution DEMs are also 

available from sources like the ASTER instrument and the Shuttle Radar Topography 

Mission (SRTM). These types of datasets are crucial for a wide range of scientific and 

practical applications, including both global relief modeling and terrain analysis. 

Digital Elevation Models are also the essential tools in terms of various scientific 

and engineering fields, offering a more detailed representations of the Earth’s surface 

and other planetary bodies.  

The development and application of DEMs still continue to advance with 

improvements in terms of remote sensing technology and data processing techniques. 

Environmental data which mainly refers to the information derived from measuring 

environmental pressures, along with the state of the environment, and the impacts on 

the interconnected ecosystems [22–24].  

These components are integral to the DPSIR (Drivers, Pressures, State, Impact, 

Response) model, commonly used in environmental science to analyze and manage 

environmental issues. While environmental data primarily encompasses the “P,” “S,” 

and “I” elements of this model, it excludes socio-economic data and other statistical 

information often associated with the “D” and “R” components. However, for a 

comprehensive environmental assessment, these socio-economic and statistical data 

are crucial, though they are typically managed by institutions outside the 

environmental sector, such as National Statistical Offices.  

Similarly, geo-basis data, while not classified as environmental data, are essential 

for effective environmental policy-making and information management. 

Environmental data is predominantly generated by institutions engaged in executing 

environmental laws or conducting environmental research [25–27]. This data serves 

as the backbone for environmental assessments, regulatory compliance, and policy-

making. The increasing significance of environmental data in various sectors has also 

been recognized by the financial industry.  

For instance, Bloomberg L. P. has begun providing Environmental, Social, and 

Governance (ESG) data through its terminals, reflecting the growing demand for this 

information among investors. ESG data, which includes environmental data, is 

becoming a critical factor in investment decisions, as investors seek to align their 

portfolios with sustainable and socially responsible business practices. To manage the 

complexities of collecting, processing, and reporting environmental data, especially in 

compliance with legal and regulatory requirements, Environmental Data Management 

Systems (EDMS) are increasingly being adopted.  
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These systems are designed to handle the various aspects of environmental data 

management, such as monitoring programs, data validation, and the generation of 

compliance reports. The implementation of EDMS is driven by the need to ensure 

accurate and timely data collection, meet compliance requirements, and reduce the 

administrative burden associated with environmental data management [28,29]. 

The growing importance of ESG factors, including environmental data, is further 

highlighted by predictions that ESG assets under management could reach $53 trillion 

within the next few years, accounting for one-third of all global assets under 

management. This trend is driven by factors such as fee pressure, increasing regulatory 

demands, and the push from asset owners for investments that are not only financially 

profitable but also aligned with sustainable and socially just practices. As a result, 

environmental data is truly playing an increasingly critical role in terms of shaping the 

future of both the environmental policy and global investment strategies [30–32]. 

An Earth observation satellite, also known as an Earth remote sensing satellite, is 

mainly a type of satellite which is specifically designed to observe and monitor the 

Earth’s environment from space. These satellites also serve other types of various 

purposes, including environmental monitoring, meteorology, cartography, and even 

intelligence gathering, as seen with many spy satellites [33–35]. The most common 

type of Earth observation satellites are the imaging satellites, which capture images of 

the Earth’s surface, similar to the aerial photographs.  

However, some other satellites perform remote sensing without producing 

images, such as those which are mainly involved in GNSS (Global Navigation Satellite 

System) radio occultation, which measures atmospheric properties.  

The root history of satellite remote sensing began mainly with the launch of 

Sputnik 1 by the Soviet Union on 4 October 1957. Sputnik 1 sent radio signals back 

to Earth, which scientists actually used to study the ionosphere, marking the first 

instance of satellite-based remote sensing. Following this, the United States also 

launched its first satellite, Explorer 1, on 31 January 1958. The data from Explorer 1’s 

radiation detector led to the root discovery of the Earth’s Van Allen radiation belts. 

Another significant milestone was the launch of TIROS-1 on 1 April 1960, by NASA. 

TIROS-1 which was the first satellite to send back the television footage of weather 

patterns from space, laying the root foundation for modern types of weather satellites. 

By 2008, there were almost over 150 Earth observation satellites in orbit, collecting 

vast amounts of information data daily. This number grew much significantly, reaching 

over 950 satellites by 2021, with the majority mainly operated by the US-based 

company Planet Labs. Most types of Earth observation satellites operate at relatively 

low altitudes, generally above 500 to 600 km, to fully capture detailed images and 

data. 

However, the lower orbits require frequent reboost of maneuvers due to the 

atmospheric drag. Many Earths observation satellites, including those which are 

mainly operated by the European Space Agency (ESA) and the UAE, utilize low Earth 

orbits (LEO) to provide a much better high-resolution imagery and data [36–38]. 

To achieve global coverage, many Earth observation satellites are placed within 

the polar or Sun-synchronous orbits. A polar orbit mainly allows the satellite to scan 

different parts and sections of the Earth with each orbit due to the Earth’s rotation.  
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Sun-synchronous orbits additionally ensures that the satellite passes over the 

same spot-on Earth at the same time each day, providing a more consistent lighting 

conditions for observations. 

In contrast with that, geostationary orbits, located at a high altitude of 36,000 

kilometers, allow the satellites to remain at fixed over a specific point on the Earth’s 

surface, providing more continuous coverage of that particular area. This type of orbit 

is primarily used for meteorological satellites. Earth observation satellites have also 

many numerous applications, including weather monitoring, environmental 

monitoring, and mapping. Weather satellites, for example, tracks the cloud patterns, 

monitor volcanic ash clouds, and observing for smoke from wildfires. Environmental 

satellites detect changes within vegetation, atmospheric gases, sea conditions, and ice 

fields, aiding within the monitoring of droughts, oil spills, and pollution. Mapping 

satellites, such as the Radarsat-1 and TerraSAR-X, provide detailed terrain maps using 

the radar technology. 

International regulations that govern the use of Earth observation satellites, 

particularly regarding the allocation of many radio frequencies for communication 

between satellites and their associated ground stations. The International 

Telecommunication Union (ITU) mainly defines Earth exploration-satellite service as 

a radiocommunication service that mainly collects and distributes data related to the 

Earth’s characteristics and its natural phenomena. These regulations ensure that 

satellite operations are harmonized globally, with frequency allocations managed by 

national administrations.  

Earth observation satellites play a crucial role in monitoring and understanding 

the Earth’s environment, providing valuable data for various scientific, environmental, 

and commercial applications. Their importance continues to grow as technology 

advances and the demand for accurate and timely environmental data increases 

[39,40]. Geographic data and information, also known as geospatial data, refers to any 

data that is implicitly or explicitly associated with a specific location on Earth.  

This type of data is critical for understanding and analyzing spatial relationships 

and patterns. It is commonly stored in Geographic Information Systems (GIS), which 

are specialized systems designed to capture, store, manipulate, analyze, and manage 

spatial or geographic data. GIS allows for the integration of various types of 

geographic information, enabling users to visualize, interpret, and understand spatial 

relationships and trends in the data.  

There are several different types of geospatial data, including vector files, raster 

files, geographic databases, web files, and multi-temporal data. Each type of data has 

its unique characteristics and uses. For instance, vector files represent geographic 

features as points, lines, and polygons, making them ideal for mapping boundaries, 

roads, and other discrete objects.  

Raster files, on the other hand, consist of grid cells that store data, such as satellite 

imagery or elevation models, making them suitable for continuous data representation. 

Geographic databases are used to store and manage large volumes of geospatial data, 

while web files allow for the sharing and dissemination of geographic information 

over the internet. Multi-temporal data refers to geospatial data collected at different 

times, which is essential for analyzing changes over time, such as in environmental 

monitoring or urban development studies. 
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Geospatial data and information are central to the various type areas fields of 

study, including geocomputation, geographic information science (GIScience), 

geoinformatics, and also geomatics. These fields also overlap in their focus on the 

acquisition, analysis, and interpretation of the geographic data [41,42]. For instance, 

geocomputation involves the use of computational techniques to solve geographic 

problems, while GIScience focuses on the theoretical and scientific aspects of 

geographic information systems and technology. Geoinformatics and geomatics 

encompass a broader range of activities, including the collection, processing, and 

analysis of geographic data using various technologies. In addition to these core fields, 

geospatial data and information are also relevant to other related disciplines such as 

cartography, geodesy, geography, geostatistics, photogrammetry, remote sensing, 

spatial data analysis, surveying, and topography. Cartography is termed the art and 

science of map-making, geodesy deals with the measurement and representation of the 

Earth, and geography studies the overall physical and human features of the Earth’s 

surface [43,44]. 

Geostatistics involves statistical analysis of spatial data, photogrammetry focuses 

on obtaining measurements from photographs, and remote sensing refers to the 

acquisition of information about the Earth’s surface using satellite or aerial sensors. 

Spatial data analysis is concerned with examining spatial patterns and relationships in 

data, surveying involves the precise measurement of land, and topography studies the 

Earth’s surface features. Geographic data and information are fundamental to a wide 

range of scientific, engineering, and planning activities. They enable the visualization 

and analysis of spatial patterns and relationships, which are essential for making 

informed decisions in areas such as urban planning, environmental management, 

transportation, and disaster response. The growing availability of geospatial 

technologies and data has expanded the possibilities for research and application, 

making geographic information a vital component of modern science and technology. 

The Earth Observing System Data and Information System (EOSDIS) is a very 

vital component of NASA’s Earth Science Data Systems Program. Designed and 

mainly maintained by Raytheon Intelligence & Space, EOSDIS provides a very 

detailed with a comprehensive platform for managing and disseminating Earth science 

data [33–44]. This system also supports a wide range of users, from casual individuals 

to the specialized research scientists selected through NASA’s peer-reviewed 

processes. EOSDIS offers many several key services, including the user support, data 

archiving, management, distribution, information management, and product 

generation, all which are overseen by the Earth Science Data and Information System 

(ESDIS) Project. EOSDIS is integral to the handling of data information from NASA’s 

Earth-observing satellites. The whole system ingests, processes, archives, and 

distributes vast amounts of data information from these satellites, as well as data 

information from aircraft, field measurements, and other types of programs. The 

system also provides end-to-end capabilities for managing this type of data, ensuring 

that it is also very much accessible to a global user base. EOSDIS’s capabilities are 

divided into many mission operations, managed by the Earth Science Mission 

Operations (ESMO) Project, and science operations, overseen by the ESDIS Project. 

These operations also include data capture, initial processing, and higher-level science 

data product generation, archiving, and distribution.  
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A key feature of the EOSDIS is its distributed system of processing the facilities 

and Distributed Active Archive Centers (DAACs), spread all across the United States. 

These DAACs serve as the custodians of Earth science data, ensuring its associated 

long-term preservation and accessibility. Each DAAC specializes in a very specific 

Earth science discipline, providing tailored services and tools to its designated user 

community.  

The DAACs manage a massive and ever-growing database, with EOSDIS 

reporting around 10 petabytes of data by 2012, with a daily ingestion rate of 

approximately around 8.5 terabytes. EOSDIS also includes many systems for 

searching and accessing data, such as the Global Change Master Directory (GCMD) 

and the Common Metadata Repository (CMR). The GCMD is a directory of over 

30,000 Earth science data information sets and services, while the CMR serves as a 

metadata catalog and complex registry for NASA’s EOS data. In 2018, Earthdata 

Search replaced Reverb as the web-based client for discovering and ordering data 

across EOSDIS’s holdings, allowing many users to search, retrieve, and order data 

through a much better user-friendly interface. The root level history of EOSDIS dates 

back to the early 1980s, when NASA began mainly exploring the feasibility of publicly 

accessible electronic data information systems. By 1990, the EOS mission, which also 

included the NASA Earth Science Enterprise, had been approved by the Congress. 

This mission supported the entire development of EOSDIS, designed as a long-term 

data and information system accessible to both the scientific community and the 

interconnected broader public. Over the years, EOSDIS has evolved to a great scale in 

terms to meet the growing demands of Earth science research, providing a more critical 

support for NASA’s Earth-observing missions and serving a diverse global community 

of users around the globe. 

Microsoft AI for Earth is another significant initiative launched within July 2017, 

focused on leveraging artificial intelligence (AI) to address critical environmental 

challenges. The project is part of Microsoft’s broader commitment to social good, 

particularly in areas related to agriculture, water, biodiversity, and climate change [40–

45]. The AI for Earth program is active in 40 countries, working on various projects 

aimed at improving the sustainability and management of the planet’s resources. The 

initiative was launched with an initial investment of $2 million, but due to its growing 

impact and potential, Microsoft later expanded its strategic approach and allocated a 

$50 million budget to support its goals. AI for Earth has formed 50 partnerships and 

supported 950 projects globally, demonstrating its expansive reach and commitment 

to addressing environmental issues through AI-driven solutions. 

One of the program’s most notable developments is the creation of the “Planetary 

Computer.” This platform also offers a wide range of tools and resources, including 

APIs, data catalogs through Azure storage, and many open-source tools, all designed 

to empower researchers and organizations to analyze and act on environmental data. 

The Planetary Computer represents a momentous advancement in the availability of 

data and computational resources for environmental science, enabling more operative 

and scalable solutions to the challenges facing our planet. Key figures involved in the 

AI for Earth initiative include Lucas Joppa, Bruno Sánchez-Andrade Nuño, Alma 

Cárdenas, and Harry Shum, who have been instrumental in driving the program’s 

vision and execution.  
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The initiative aligns with Microsoft’s broader mission of using technology for 

social good, with AI for Earth serving as a prime example of how AI can be harnessed 

to create a positive impact on both the environment and society. 

4. Big earth data: The AI perspectives  

Artificial Intelligence (AI) has truly become an integral part of NASA’s efforts to 

enhance the analysis and utilization of the overall vast amounts of Earth observation 

data. AI, particularly through machine learning (ML), enables machines to simulate 

the human decision-making processes and identify many complex patterns within 

large amounts of datasets that would be difficult, if not impossible, for humans to 

discern manually. This advanced capability is especially valuable in processing and 

analyzing Big Data collections, such as the overall extensive data generated by 

NASA’s Earth observing missions. 

NASA’s Earth Science Data Systems (ESDS) Program is also very much deeply 

committed to incorporating AI and ML into its associated operations to maximize the 

scientific return of its missions. This commitment is very much evident in the work 

conducted by NASA’s Interagency Implementation and Advanced Concepts Team 

(IMPACT) at the Marshall Space Flight Center in Huntsville, Alabama. The IMPACT 

team comprises machine learning (ML) specialists, computer scientists, and Earth 

science data experts who also collaborate to develop tools and pipelines that apply 

within ML algorithms to NASA’s Earth science datasets.  

These tools significantly enhance data discovery and the overall efficiency of all 

the research processes. In addition to this groundbreaking work of IMPACT, AI and 

ML are also being utilized at NASA’s Distributed Active Archive Centers (DAACs). 

For instance, the Goddard Earth Sciences Data and Information Services Center (GES 

DISC) is implementing a machine learning (ML) framework that uses natural language 

processing (NLP) to streamline the whole search process for data users, making it 

much easier for them to actually locate all the required relevant datasets. 

NASA also fosters AI and ML research through its Advancing Collaborative 

Connections for Earth System Science (ACCESS) program. This competitive program 

mainly focuses on developing and implementing new technologies to manage, 

discover, and utilize NASA’s extensive archive of Earth observations. The ACCESS 

2019 solicitation specifically targeted technology developments in ML, including the 

innovative creation of new training datasets for machine learning applications further 

related to Earth science.  

Furthermore, NASA supports AI and ML research through initiatives like the 

Frontier Development Lab (FDL), which mainly operates as an applied research 

accelerator at NASA’s Ames Research Center in Silicon Valley, California. The FDL, 

created by NASA’s Office of the Chief Technologist, collaborates with many academic 

institutions and Silicon Valley companies to advance AI research, further extending 

NASA’s AI capabilities.  

AI and ML are rapidly playing increasingly critical roles in NASA’s Earth science 

endeavors, driving innovations that improve the utility and accessibility of Earth 

observation data information. Through collaborative efforts, research programs, and 

technological advancements,  
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NASA still continues to push the boundaries of what AI and ML can achieve 

within the realm of Earth science, contributing to a more efficient and effective 

research and applications that will benefit both the scientific community and society 

at large. 

5. NASA AI, DL, ML perspectives: Case studies analysis  

5.1. Case study 1: Radiant earth 

Radiant Earth has made significant strides within enhancing access to the Earth 

observation training data and machine learning (ML) models through the accelerated 

development of an open-access repository, Radiant MLHub. This initiative, part of the 

ACCESS-19 project, has focused on three main areas: creating a comprehensive 

global land cover training dataset, developing an open API for machine learning model 

registration and retrieval, and improving user accessibility through a Python client. 

One of the key achievements of this project is the production of the LandCoverNet 

dataset, a multi-mission global land cover training dataset.  

This dataset consists of 8941 image chips, each measuring 256 × 256 pixels, 

derived from 300 geographically diverse tiles of Sentinel-2 imagery. These images 

span various many regions, including Africa, Asia, Australia and Oceania, Europe, 

North America, and also South America. The dataset also includes a yearly time series 

of matching Sentinel-1, Sentinel-2, and Landsat-8 imagery. Published in 2020, 

LandCoverNet has become one of Radiant MLHub’s most downloaded datasets, 

underscoring its value to the machine learning and Earth observation communities. 

In addition to the dataset, Radiant Earth has expanded the functionality of Radiant 

MLHub to support the publishing and retrieval of machine learning models. Users can 

now access a catalog of models through the STAC API, complete with documentation, 

model weights, and code, all accessible via the web interface. This expansion 

significantly broadens the utility of Radiant MLHub, making it a more comprehensive 

resource for researchers and developers working with Earth observation data. To 

further simplify the process of accessing these resources, Radiant Earth developed a 

Python client. This client allows users to programmatically search for, access, and 

download machine learning training datasets and models from Radiant MLHub. The 

introduction of this tool has reduced the complexity of interacting with the repository, 

making it more user-friendly and accessible to a broader audience. 

Looking ahead, Radiant Earth has begun developing the next generation of 

Radiant MLHub, known as Source Cooperative. This new platform is designed to 

support extremely large training datasets and expands the dataset publishing 

capabilities beyond just machine learning training data. Currently in private beta, 

Source Cooperative is expected to enter public beta in the third quarter of 2023, 

marking the next phase in Radiant Earth’s mission to democratize access to high-

quality Earth observation data and ML resources. 

5.2. Case study 2: The ESDS program project 

The ESDS program project focuses on the development of an advanced platform 

that mainly integrates satellite observations, 3D radiative transfer simulations, deep 
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learning (DL) techniques, and cloud computing to further enhance global cloud 

property retrieval. By utilizing data information from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Satellite (Suomi NPP) 

and the Advanced Baseline Imager (ABI) on the Geostationary Operational 

Environmental Satellite-16 (GOES-16), the project aims to establish a versatile 

framework applicable across different satellites for retrieving the cloud properties. 

This initiative is crucial for refining and benchmarking various algorithms used in 

satellite-based cloud remote sensing. The primary objectives of the project include 

generating high-quality cloud physics property retrievals, such as cloud masks and 

cloud phases, through deep learning models that can handle multi-sensor 

heterogeneous data.  

The project seeks to produce realistic cloud microphysics and optical property 

retrievals, including Cloud Optical Thickness (COT) and Cloud Effective Radius 

(CER), using the 3D radiative transfer simulations combined with many types of deep 

learning (DL) models. Another key goal is to develop scalable cloud computing-based 

services for enhanced processing and analyzing vast amounts of data, facilitating the 

implementation of cloud retrieval algorithms on a global scale. Clouds, which cover 

about two-thirds of Earth’s surface, also plays a vital role in regulating the climate and 

influencing the types of various environmental cycles. Given their significance, 

satellite-based remote sensing has truly become essential for global cloud observation. 

This project aligns with the priorities set within NASA’s latest Decadal Survey, which 

also emphasizes the importance of cloud observations in Earth science missions.  

Various types of satellite sensors, both active and passive, have been developed 

to observe and retrieve cloud properties. Active sensors, like those available on the 

Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and 

CloudSat missions, excel within resolving the vertical location of cloud layers, 

especially during nighttime and mainly over polar regions. In contrast to that, passive 

sensors, such as MODIS, VIIRS, and ABI, offer the superior spatial sampling rates. 

5.3. Case study 3: Machine learning (ML) data workflows 

Machine learning (ML) has revolutionized many fields, including satellite remote 

sensing. In this project, ML and deep learning (DL) techniques are mainly employed 

to improve cloud property retrieval. High-quality training datasets are very crucial for 

these models, which is why the project combines data from both active and passive 

sensors, advances in 3D radiative transfer simulations, and deep learning methods. 

This approach addresses the biases and uncertainties associated with traditional 1D 

radiative transfer models and facilitates the development of 3D cloud property 

retrievals. Additionally, the project leverages cloud computing and Big Data 

technologies to manage and analyze the vast archive of Earth observations efficiently. 

Among the project’s major accomplishments are the development of scalable 

satellite collocation data and toolkits, including CALIPSO-VIIRS and CALIPSO-ABI 

collocation datasets. These tools have been approved for the New Technology Report 

(NTR) and Software Release Request (SRS), and are now open-source on GitHub. 

The project also produced 3D radiative transfer simulation data information for 

synthetic cloud fields, such as fractal and Large-Eddy-Simulation (LES) clouds. 
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Furthermore, the collaborative team developed two deep learning (DL) models for 

cloud property retrieval, which have demonstrated superior performance compared to 

existing physics-based and deep learning approaches. These models have also received 

NTR approvals, and their source codes will be made available as open-source 

software, contributing to the broader scientific community’s efforts in atmospheric 

remote sensing. 

5.4. Case study 4: Geoweaver workflow management system 

GeoWeaver is an innovative workflow management system designed to enhance 

the productivity and collaboration of Earth scientists by integrating Python code and 

Shell scripts into seamless, shareable pipelines. The system addresses the need for a 

flexible and intuitive tool that enables researchers to efficiently manage and execute 

complex workflows while ensuring that these workflows are Findable, Accessible, 

Interoperable, and Reusable (FAIR). By providing an intuitive interface that simplifies 

the creation, execution, and sharing of AI workflows, GeoWeaver aims to eliminate 

duplicated efforts, streamline knowledge transfer, and foster collaboration among 

scientists with varying technical expertise. One of the primary objectives of 

GeoWeaver is to make AI workflows more tangible and accessible to both beginners 

and experienced researchers. 

The platform’s design allows its associated users to quickly understand and 

contribute to existing projects, thereby accelerating the transition from learners to 

contributors. GeoWeaver achieves this by decoupling workflows from datasets and 

computing platforms, making them clean, safe, and portable. It also records the history 

of code and execution logs, ensuring that every step is permanently documented, 

which is crucial for maintaining the integrity and reproducibility of scientific research. 

Key features of GeoWeaver include the ability to execute processes on any chosen 

host, whether locally or remotely, and to wrap entire workflows into simple, shareable 

zip files. These files can be easily distributed through various channels, such as Slack, 

email, or social media. Additionally, GeoWeaver condenses thousands of lines of code 

into an intuitive graph, allowing users to browse and edit workflows within a single 

view. This functionality not only simplifies the overall management of complex 

workflows but also ensures that team members are synchronized, allowing them to 

collaborate effectively on the same project. 

Throughout its development, the GeoWeaver team has actively engaged with the 

Earth science community to address user feedback and promote the adoption of the 

platform. The team has developed the pygeoweaver library, which has been well-

received by the community, particularly among those using Python. The software is 

currently being utilized for various AI workflows, including the Community 

Multiscale Air Quality (CMAQ) AI operation site, severe weather event forecasting, 

and ocean eddy detection. In addition to its technical achievements, GeoWeaver has 

made significant strides in outreach and collaboration. The team has sponsored Earth 

Science Information Partners (ESIP) mini grants and worked closely with domain 

scientists to address the challenges of implementing FAIR Earth AI workflows. One 

notable project involved using GeoWeaver to create a snow workflow, which was 

presented at the American Geophysical Union (AGU).  
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Moving forward, the team plans to further expand the use of GeoWeaver in 

operational settings, including collaborations with NASA scientists to integrate the 

platform into high-performance computing (HPC) and cloud environments. 

The GeoWeaver team has also contributed to the broader Earth science 

community by sharing their experiences with NASA’s Earth Science Data System 

Working Group (ESDSWG) and the ESIP machine learning (ML) cluster. They have 

drafted a comprehensive paper titled “A Review of Earth Artificial Intelligence,” 

which has become one of the most popular papers in the journal Computers and 

Geosciences. This paper aims to demystify Earth AI by providing an overview of 

representative AI research across the types of major spheres of the Earth system. In 

terms of major accomplishments, the GeoWeaver team has successfully released 

GeoWeaver 1.0.0-rc10, which is now ready for use, along with pygeoweaver 0.6.6, 

available for installation via pip. The CMAQ AI operational workflow, developed 

using GeoWeaver, is currently running daily, showcasing the platform’s capability to 

support continuous, reliable operations in Earth science research. 

5.5. Case study 5: Passive microwave measurements from satellites 

Passive microwave measurements from satellites provide invaluable data for 

retrieving various surface and atmospheric parameters, but their complexity has often 

limited their accessibility to those with specialized satellite knowledge. These 

measurements, which are available in raw swath formats, are challenging to align with 

data from other satellites or ancillary data necessary for comprehensive analysis.  

To address this issue, a project has been undertaken to resample and organize 

these microwave data onto fixed Earth grids, significantly lowering the barriers for 

broader scientific use and enabling easier integration into machine learning (ML) 

algorithms. The main objectives of the project include resampling microwave 

measurements from multiple satellites onto fixed latitude/longitude and polar grids, 

providing a consistent set of ancillary data aligned with these grids, and offering 

comprehensive documentation to assist users in creating machine learning datasets 

from this organized data collection. By achieving these objectives, the project mainly 

aims to democratize the use of passive microwave data information, allowing 

researchers and developers to work with these data without needing deep expertise in 

satellite-specific formats.  

The project has also successfully resampled microwave radiances measured by 

the Advanced Microwave Scanning Radiometer 2 (AMSR2) onto two types of Earth 

grids: a global 0.25-degree latitude/longitude grid and a 25 km EASE2 polar grid for 

the Northern Hemisphere. The resampling process utilized the Backus-Gilbert method 

to achieve the high accuracy, combined with 2D interpolation to precisely place the 

resampled footprints. These grids support two footprint sizes: 30 km and 70 km 

circular footprints, depending on the frequency and polarization of the measurements. 

The result is a set of microwave data information that is much easier to work with and 

more compatible with other Earth observation datasets. 

In addition to the resampled microwave data, the project also provides various 

ancillary datasets on the same grids, resampled to match the footprint sizes and shapes 

of the microwave measurements.  
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These ancillary datasets include land/water fraction from MODIS, precipitation 

data from the Integrated Multi-satellite Retrievals for GPM (IMERG), and several 

atmospheric parameters from the European Centre for Medium-Range Weather 

Forecasts Reanalysis v5 (ERA5), such as skin temperature, total column water vapor, 

total column cloud water, and vector winds. 

These ancillary datasets are very much critical for further developing and testing 

retrieval algorithms, as they can serve as both the input parameters and target outputs 

for different ML models. The project has made many significant strides in improving 

the usability of this data information collection for algorithm development. The team 

has developed a Jupyter notebook that demonstrates how to construct a machine 

learning dataset using the resampled microwave data and ancillary datasets. This 

notebook provides simple examples that guide users through the process, making it 

easier for them to apply these data in their own research and development projects. 

The major accomplishments of the project include the resampling of AMSR2 

measurements from 2012 to 2021 onto regular grids, the collocation of ancillary data 

in time and space with the microwave measurements, and the development of user-

friendly resources like the Jupyter notebook. These achievements represent a great 

significant step forward in terms of making passive microwave data more accessible 

and usable for a wide range of Earth science applications, particularly those involving 

machine learning (ML) and data integration from multiple sources. 

5.6. Case study 6: DL, ML datasets 

The collection of high-quality training data information is still a very significant 

challenge in large-area land cover classification and disturbance mapping, particularly 

when it comes to ensuring the minimal error and achieving higher spatial resolution 

than the satellite data being classified or validated. Recent advancements in deep 

learning (DL) and active learning approaches, combined with the availability of 

commercial high spatial resolution data (less than 10 meters), offer promising 

opportunities for generating many types of training datasets that are suitable for 

application to 30-meter Landsat and 10 to 20-meter Sentinel-2 data. 

The primary objectives of this project include developing an active-learning-

based solution to efficiently create large-scale training datasets from PlanetScope time 

series for specific classes such as burned areas and tree cover. The project also aims to 

generate high-quality 3-meter resolution training datasets for these classes, provide 

clean and quality-controlled labeled data to the broader research community, and share 

the developed algorithms and software through peer-reviewed research publications 

and open-source code repositories. 

To achieve all these objectives, the project has developed an active learning 

framework based on the U-Net architecture, designed to efficiently generate training 

data information from PlanetScope imagery. This framework follows a systematic 

approach. 

1) Initial Training: The U-Net model is first trained using either coarser resolution 

burned/unburned validation data from a globally distributed, manually-labeled set 

of 30-meter Landsat images or by manually annotating PlanetScope images to 

classify tree/no-tree classes in various forested environments. 
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2) Initial Classification and Quality Assessment: The trained U-Net model is then 

applied to classify a small set of unlabeled PlanetScope images. The resulting 

classifications are quality-assessed and manually corrected as necessary. 

3) Validation: The U-Net model is subsequently applied to classify a predetermined 

set of validation images, which have been independently annotated, to assess the 

classification accuracy. 

4) Iteration or Completion: If the classification accuracy meets the required 

standards, the process stops. If not, the corrected classified images from the 

second step are added to the existing training dataset, and the U-Net model is 

retrained. This iterative process continues until the desired accuracy is achieved. 

The project has made significant progress and achieved several major 

accomplishments. Notably, it has generated burned area training data for all of Africa, 

utilizing 575 pairs of two-date PlanetScope images. Additionally, the methodology for 

generating tree cover training data has been refined through the active learning 

approach.  

The results and methodologies have been disseminated through the publication 

of two peer-reviewed journal papers, contributing valuable resources and knowledge 

to the field of land cover classification and disturbance mapping. 

5.7. Case study 7: The pangeo-ML project 

The Pangeo-ML project builds upon on the foundation of the Pangeo Project to 

further enhance machine learning (ML) workflows for researchers and data scientists 

working with many types of complex multi-dimensional datasets. Recognizing the 

unique challenges in geoscientific ML workflows, such as data dimensionality, 

transformations, and large volumes, the Pangeo-ML team has focused on developing 

high-level tools that can bridge the gaps between commonly used geoscientific 

exploratory data analysis software and deep learning (DL) frameworks.  

This project aims to simplify data preprocessing, expand software 

interoperability, and foster an open-source community equipped with the tools and 

knowledge to work with Earth observation (EO) data in ML applications. A core 

objective of Pangeo-ML has been to improve the interoperability of the scientific 

Python ecosystem, making it easier to construct preprocessing pipelines for ML 

applications. To this end, the team has contributed to the integration of the Holoviz 

suite of tools (including hvPlot, GeoViews,  

Holoviews, Datashader, SpatialPandas) with other key components of the 

scientific Python ecosystem, such as Zarr, Xarray, and Rioxarray. This integration has 

greatly simplified the interactive exploration and preprocessing of Earth science and 

ML datasets. Additionally, the project has enhanced the interoperability between 

Xarray, Dask, and geospatial libraries like Pytroll Satpy and Pyresample, streamlining 

common tasks such as geographic resampling in preprocessing pipelines. Another 

significant achievement of the Pangeo-ML project is the development of new software 

interfaces between Xarray and machine learning libraries. The Xbatcher library, a 

notable outcome of this work, simplifies batch data generation from Xarray datasets, 

supporting direct integration with popular ML frameworks like TensorFlow and 

PyTorch.  



Journal of Geography and Cartography 2025, 8(1), 10224. 
 

18 

This library facilitates lazy batch generation, parallel loading, caching, and data 

loaders, making it easier to handle large datasets in deep learning workflows. 

Beyond software development, the Pangeo-ML team has actively engaged with 

the open-source community, providing expanded documentation, tutorials, talks, and 

workshops to support scalable machine learning workflows. Their efforts have led to 

the release of new and improved open-source software, such as Xbatcher and 

Kerchunk, as well as foundational packages like Xarray and Dask. The team has also 

developed machine learning applications that both motivate and guide tool 

development, including a biomass mapping workflow using Landsat and 

ICESat/GLAS data, a hydrometeorological data assimilation project using FluxNet, a 

climate downscaling application, and ocean surface current estimation from remote 

sensing observations. The Pangeo-ML project has made significant strides in 

improving ML workflows for geoscientific research by enhancing software 

interoperability, developing new tools, and fostering an active open-source 

community. Their work has simplified the process of working with complex multi-

dimensional datasets, enabling more efficient and scalable ML applications in the 

geosciences. 

5.8. Case study 8: The global vegetation structure (GVS) project 

The Global Vegetation Structure (GVS) project focuses on developing machine 

learning models to integrate data from various remote sensing technologies, aiming to 

study and map global vegetation structure. By leveraging the strengths of different 

remote sensing instruments, particularly lidar sensors, radar, and optical sensors, the 

project seeks to overcome the limitations of individual technologies and create 

comprehensive, high-resolution maps of vegetation structure and its changes over 

time.  

Lidar sensors, whether deployed on satellites or from airborne campaigns, offer 

direct measurements of the vertical profile of vegetation, but their availability and 

coverage are limited. In contrast, radar and optical sensors, while providing indirect 

estimates of vegetation structure, offer excellent global coverage. 

The GVS project aims to combine the detailed, yet sparse, data from lidar with 

the broad coverage of radar and optical sensors using advanced machine learning 

techniques, enabling the creation of wall-to-wall maps of vegetation structure on a 

global scale. The project is structured around several key objectives, beginning with 

the assessment and inter-calibration of lidar data from different instruments, both 

space-borne and airborne. This involves collecting and validating airborne lidar 

campaign data and comparing it with space-borne products. Where necessary, inter-

calibration techniques are mainly applied to harmonize data from different types of 

instruments, ensuring that the aggregated dataset is of high quality and suitable for 

integration with other types of remote sensing data. Preprocessing of dense predictors 

is another very crucial step in the GVS project. 

This involves developing and applying many types of methodologies to 

preprocess input datasets, such as optical imagery from Landsat and Sentinel-2, and 

radar data from the Advanced Land Observing Satellite (ALOS) PALSAR, on a global 

scale.  
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The preprocessing ensures that these datasets are aggregated to different 

resolutions and aligned on compatible grids, facilitating their integration with lidar 

data. Once the data is collected and preprocessed, the project focuses on testing and 

comparing various machine learning models. By utilizing the diverse input data 

sources, the team evaluates different models to identify the most effective approach 

for estimating vegetation structure. 

This process involves assessing the drawbacks and limitations of each method, 

ensuring a comprehensive evaluation that leads to improvements in the models. The 

goal is to establish a consistent multiscale approach that can be applied globally while 

also considering the costs associated with each methodology. 

A critical aspect of the project is the intercomparison of the derived products with 

ground truth airborne datasets. By benchmarking the machine learning model outputs 

against these ground truth datasets, the GVS project can assess the accuracy and 

reliability of its methods. This benchmarking is essential for validating the models and 

ensuring that they provide robust and accurate estimates of vegetation structure on a 

global scale. 

Major accomplishments of the GVS project include the development of a 

methodology to combine data information from two types of different lidar 

instruments, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and the Global 

Ecosystem Dynamics Investigation (GEDI) missions. This approach helps to fill out 

the observation gaps in GEDI data over boreal areas, enhancing the overall coverage 

and accuracy of vegetation structure mapping. Multiple machine learning (ML) 

models for estimating vegetation structure from optical and radar imagery have been 

tested and applied globally, yielding results that are on par with the current state-of-

the-art in the field. 

The GVS project represents a very comprehensive effort to advance the study of 

global vegetation structure through the integration of lidar, radar, and optical remote 

sensing data. By combining all these types of diverse data sources with cutting-edge 

machine learning (ML) techniques, the project aims to produce accurate, high-

resolution maps of vegetation structure, contributing valuable insights for ecological 

research and environmental management on a global scale. 

5.9. Case study 9: Training data for streamflow estimations 

The collaborative project between NASA’s Goddard Space Flight Center, the 

Alaska Satellite Facility, the University of Arizona, and the University of Maryland is 

focused on developing a comprehensive dataset of river width measurements using 

ESA Sentinel-1 C-Band Synthetic Aperture Radar (SAR) data. This dataset is intended 

for training machine learning models that estimate river flow rates and for use in 

related hydrological models. Sentinel-1 SAR data, with its ability to provide high-

resolution, all-weather, day-and-night data at a nominal six-day revisit time, is central 

to this initiative. 

The project has combined several key objectives. First, it aims to provide the 

research community with a more robust dataset of the river width measurements 

through NASA’s Physical Oceanography Distributed Active Archive Center 

(PO.DAAC).  



Journal of Geography and Cartography 2025, 8(1), 10224. 
 

20 

This dataset will also be very instrumental in enhancing the overall capability of 

the research community to map surface water at a 10-meter resolution using Sentinel-

1 data distributed by the Alaska Satellite Facility. Additionally, the project also seeks 

to demonstrate the utility of these river width measurements in deriving accurate river 

flow rate estimates, which are also very much crucial for various hydrological studies 

and applications. 

To achieve all these objectives, the project is developing a workflow for 

generating effective river width measurements, defined as the surface water area 

divided by the river reach length. This workflow is being executed on the Alaska 

Satellite Facility’s (ASF) OpenScienceLab System and comprises three primary 

components: preprocessing using standard ASF Sentinel-1 methods, a surface water 

extent mapping program, and a river width measurement program that utilizes the 

surface water maps as input. An essential feature of the system is a module that filters 

out Sentinel-1 scenes that do not include river reaches of interest, specifically those 

listed in the NASA Surface Water and Ocean Topography (SWOT) Mission SWOT 

River Database (SWORD). The project is evaluating several surface water mapping 

algorithms using Sentinel-1 SAR data. 

These include HydroSAR, developed by the Alaska Satellite Facility; the Equal 

Percent Solution, developed by the project’s principal investigator; and a machine 

learning algorithm from the University of Arizona. Additionally, the team is 

considering algorithms from the NASA Observational Products for End-Users from 

Remote Sensing Analysis (OPERA) Project and a hybrid algorithm that combines 

elements of the Equal Percent Solution and the OPERA algorithm. 

The accuracy of these water maps is now being assessed using hand-labeled water 

maps derived from high-resolution commercial data provided by the Planetscope 

constellation. The algorithm deemed most effective will be integrated into the ASF 

processing system and made available to the research community through an interface 

provided by ASF. The river width measurement program, a modification of the 

RivWidth Cloud Program developed by the University of North Carolina, will be 

adapted to use the Sentinel-1 water maps and interface with the SWORD database.  

This integration will automate the measurement of effective river width for the 

nodes and reaches in the database. The accuracy of the river width data will be 

evaluated using hand measurements based on Planetscope data. The project will also 

assess the utility of these river width measurements for deriving river flow rates in a 

machine learning model and within the SWOT Mission GeoBAM model. 

The project has achieved a large number of significant milestones, including the 

development of a new algorithm for mapping surface water using Sentinel-1 data, 

known as “The Equal Percent Solution.” This algorithm adjusts a radar backscatter 

threshold to balance false positives and false negatives, improving the accuracy of 

water detection. A high-resolution dataset of hand-labeled water maps based on 

Planetscope data has been created and made available to the research community for 

training machine learning models and evaluating water maps.  

The project also implemented an end-to-end system for measuring river width 

using Sentinel-1 SAR data, although an issue with releasing the river width 

measurement code to the public led to its removal, with replacement code currently in 

development.  
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This project represents a very significant effort to advance the use of remote 

sensing data for hydrological modeling and river flow rate estimation. By developing 

and providing high-quality datasets and tools to the research community, the project 

aims to enhance the overall understanding and management of global water resources.  

To provide a better retrospect on the matter of perspectives and how they perform 

in real time dynamics Figures 1–3 offers visualizations for a better understanding. 

 

Figure 1. An overview of earth data in action (EOSDIS). 

 

Figure 2. An overview of aws services in action (EOSDIS). 
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Figure 3. An overview of NASA’s AI workflow for earth data. 

6. Results and findings 

This section presents the detailed results and findings of the research exploration 

investigations, highlighting the integration of Big Earth Data, machine learning 

algorithms, and remote sensing technologies for geological and mineral mapping. The 

outcomes are contextualized to provide a refined clarity on the overall improvements 

achieved, insights gained, and the various types of associated challenges which were 

encountered. 

6.1. Geological and lithological mapping 

The application of machine learning techniques to geological and lithological 

mapping demonstrated significant advancements in the classification of geological 

features. For example, using AVIRIS-NG hyperspectral data for mapping gold-bearing 

granite-greenstone rocks in Hutti, India, support-vector machines (SVM) 

outperformed other algorithms, achieving an accuracy of 90.3%.  

In Brazil’s Cinzento Lineament, the combination of spatial constraints with 

remote sensing data achieved 78.7% accuracy, underscoring the role of integrating 

spatial data for enhanced results. Similarly, hyperspectral data in Morocco’s Central 

Jebilet region yielded a classification accuracy of 93.05%, slightly higher than the 

89.24% achieved with multispectral data. These results validate the robustness of 

machine learning in processing complex geospatial data. 

However, challenges such as vegetation cover significantly impacted the results, 

necessitating preprocessing techniques like band selection and dimensionality 

reduction. Table 1 lists the datasets, models, and performance metrics, providing an 

overview of the experimental framework and the respective outcomes for each case 
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study. 

6.2. Landslide susceptibility and hazard mapping 

The integration of topographic and lithological datasets with satellite imagery 

enabled accurate landslide susceptibility mapping. For instance, in Fruška Gora 

Mountain, Serbia, the SVM algorithm outperformed Decision Trees and Logistic 

Regression with an accuracy exceeding 85%, effectively identifying high-risk zones. 

In Honshu Island, Japan, the combination of ASTER geomorphic data and geological 

maps with Artificial Neural Networks (ANN) achieved a prediction accuracy of over 

90%, showcasing the reliability of machine learning in disaster-prone areas. 

These results were validated through the exploration investigations coupled with 

the associated cross-validation techniques and independent datasets, demonstrating 

the overall robustness across many types of diverse terrains. The findings emphasize 

the role of advanced models in urban planning and disaster management. 

6.3. Discontinuity analyses 

Machine learning, particularly Convolutional Neural Networks (CNNs), excelled 

in recognizing geological discontinuities like fault planes and bedding planes. For 

instance, experiments in Korea revealed that CNN-based models achieved a specificity 

and negative predictive value (NPV) exceeding 0.99, ensuring highly accurate fracture 

detection even under challenging conditions, such as overlapping geological features 

or dense vegetation cover. Data augmentation techniques, including flipping and 

cropping, were instrumental in enhancing model generalization. 

6.4. Carbon dioxide leakage detection 

Hyperspectral imaging combined with machine learning algorithms identified 

vegetation stress signals indicative of CO₂ leakage from underground sequestration 

sites. The ISODATA clustering technique was particularly effective, clustering pixels 

with similar stress responses to detect leakage zones. In the ZERT site in the US, this 

method yielded promising results, albeit influenced by seasonal and vegetative 

variations. These findings highlight the potential for machine learning in 

environmental monitoring and mitigation efforts. 

6.5. Quantification of water inflow in rock tunnels 

Using CNNs to classify tunnel face conditions into non-damage, wet, and 

dripping states achieved an accuracy of 93.01%, significantly improving the 

automation of water inflow quantification processes. This capability reduces reliance 

on subjective visual assessments and provides a scalable solution for large-scale 

infrastructure projects. 

6.6. Soil and geological structure classification 

Machine learning models demonstrated exceptional performance in classifying 

soil types and geological structures. For soil classification using Cone Penetration 

Testing (CPT) logs, ANN models achieved the highest accuracy across various soil 

types. Similarly, CNNs and Transfer Learning approaches were highly effective in 
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identifying geological structures such as folds, faults, and dikes, achieving 

classification accuracies of 80%–90%. 

7. Earthquake early warning systems and forecasting 

Machine learning enhanced earthquake detection and forecasting by effectively 

distinguishing earthquake signals from noise. Models like Random Forest and GANs 

accurately recognized P-waves, with laboratory experiments showcasing their ability 

to predict fault failure time, contributing to improved early warning systems. 

The results collectively underscore the transformative role of machine learning 

in geological and mineral mapping. The AI models demonstrated superior accuracy, 

efficiency, and adaptability compared to traditional methods. By integrating Big Earth 

Data, the research addressed challenges such as vegetation cover and data 

heterogeneity, paving the way for more precise and automated mapping solutions. 

The findings revealed that algorithm selection significantly impacts outcomes, 

with SVMs and CNNs often outperforming other methods for specific applications. 

However, challenges such as algorithm transparency (e.g., neural networks as “black-

box” models) and computational costs require further exploration to optimize their 

deployment. 

Future experimental outlook 

To build upon the current findings, future experiments will focus on: 

• Enhanced algorithm transparency: Developing interpretable machine learning 

models to improve stakeholder trust and usability. 

• Dynamic data integration: Incorporating temporal changes in Big Earth Data to 

study evolving geological and environmental processes. 

• Scalable solutions: Exploring distributed computing and cloud-based 

frameworks for real-time data processing and analysis. 

• Interdisciplinary approaches: Combining AI with domain-specific knowledge to 

address complex earth science challenges. 

Figures 4–8 visually illustrate key results and findings, while Table 1 provides a 

consolidated view of the datasets, methodologies, and performance metrics, 

facilitating a comprehensive understanding of the research outcomes. 

Table 1. The various data sources results and findings in action. 

Objective Input dataset Location 
Machine learning 

algorithms (MLAs) 
Performance 

Lithological 

Mapping of 

Gold-bearing 

granite-

greenstone 

rocks [46] 

AVIRIS-NG hyperspectral data Hutti, India 

Linear Discriminant 

Analysis (LDA), 

Random Forest, Support 

Vector Machine (SVM) 

Support Vector Machine (SVM) outperforms 

the other Machine Learning Algorithms 

(MLAs) 

Lithological 

Mapping in 

the Tropical 

Rainforest 

[45] 

Magnetic Vector Inversion, 

Ternary RGB map, Shuttle Radar 

Topography Mission (SRTM), 

False color (RGB) of Landsat 8 

combining bands 4, 3 and 2 

Cinzento 

Lineament, 

Brazil 

Random Forest 

Two predictive maps were generated:  

(1) Map generated with remote sensing data 

only has a 52.7% accuracy when compared to 

the geological map, but several new possible 

lithological units are identified 

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
https://en.wikipedia.org/wiki/Landsat_8
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Table 1. (Continued). 

Objective Input dataset Location 
Machine learning 

algorithms (MLAs) 
Performance 

    

(2) Map generated with remote sensing data 

and spatial constraints has a 78.7% accuracy 

but no new possible lithological units are 

identified 

Geological 

Mapping for 

mineral 

exploration 

[47] 

Airborne polarimetric Terrain 

Observation with Progressive 

Scans SAR (TopSAR), 

geophysical data 

Western 

Tasmania 
Random Forest 

Low reliability of TopSAR for geological 

mapping, but accurate with geophysical data. 

Geological 

and 

Mineralogica

l mapping 

Multispectral and hyperspectral 

satellite data 

Central Jebilet, 

Morocco 

Support Vector Machine 

(SVM) 

The accuracy of using hyperspectral data for 

classifying is slightly higher than that using 

multispectral data, obtaining 93.05% and 

89.24% respectively, showing that machine 

learning is a reliable tool for mineral 

exploration. 

Integrating 

Multigeophy

sical Data 

into a Cluster 

Map [48] 

Airborne magnetic, frequency 

electromagnetic, radiometric 

measurements, ground gravity 

measurements 

Trøndelag, Mid-

Norway 
Random Forest 

The cluster map produced has a satisfactory 

relationship with the existing geological map 

but with minor misfits. 

High-

Resolution 

Geological 

Mapping 

with 

Unmanned 

Aerial 

Vehicle 

(UAV) [42] 

Ultra-resolution RGB images 

Taili waterfront, 

Liaoning 

Province, China 

Simple Linear Iterative 

Clustering-

Convolutional Neural 

Network (SLIC-CNN) 

The result is satisfactory in mapping major 

geological units but showed poor performance 

in mapping pegmatites, fine-grained rocks and 

dykes. UAVs were unable to collect rock 

information where the rocks were not exposed. 

Surficial 

Geology 

Mapping [49] 

Remote 

Predictive 

Mapping 

(RPM) 

Aerial Photos, Landsat 

Reflectance, High-Resolution 

Digital Elevation Data 

South Rae 

Geological 

Region, 

Northwest 

Territories, 

Canada 

Convolutional Neural 

Networks (CNN), 

Random Forest 

The resulting accuracy of CNN was 76% in 

the locally trained area, while 68% for an 

independent test area. The CNN achieved a 

slightly higher accuracy of 4% than the 

Random Forest. 

Landslide 

Susceptibility 

Assessment 

[50] 

Digital Elevation Model (DEM), 

Geological Map, 30m Landsat 

Imagery 

Fruška Gora 

Mountain, 

Serbia 

Support Vector Machine 

(SVM), Decision Trees, 

Logistic Regression 

Support Vector Machine (SVM) outperforms 

the others 

Landslide 

Susceptibility 

Mapping [51] 

ASTER satellite-based 

geomorphic data, geological maps 

Honshu Island, 

Japan 

Artificial Neural 

Network (ANN) 

Accuracy greater than 90% for determining the 

probability of landslide. 

Landslide 

Susceptibility 

Zonation 

through 

ratings [52] 

Spatial data layers with slope, 

aspect, relative relief, lithology, 

structural features, land use, land 

cover, drainage density 

Parts of 

Chamoli and 

Rudraprayag 

districts of the 

State of 

Uttarakhand, 

India 

Artificial Neural 

Network (ANN) 

The AUC of this approach reaches 0.88. This 

approach generated an accurate assessment of 

landslide risks. 

Regional 

Landslide 

Hazard 

Analysis [53] 

Topographic slope, topographic 

aspect, topographic curvature, 

distance from drainage, lithology, 

distance from lineament, land 

cover from TM satellite images, 

Vegetation index (NDVI), 

precipitation data 

The eastern part 

of Selangor 

state, Malaysia 

Artificial Neural 

Network (ANN) 

The approach achieved 82.92% accuracy of 

prediction. 

https://en.wikipedia.org/wiki/Synthetic-aperture_radar
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Table 1. (Continued). 

Objective Input dataset Location 
Machine learning 

algorithms (MLAs) 
Performance 

Recognition 

of Rock 

Fractures 

[54] 

Rock images collected in field 

survey 

Gwanak 

Mountain and 

Bukhan 

Mountain, 

Seoul, Korea 

and Jeongseon-

gun, Gangwon-

do, Korea  

Convolutional Neural 

Network (CNN) 

The approach was able to recognize the rock 

fractures accurately in most cases. The 

Negative Prediction Value (NPV) and the 

Specificity are over 0.99. 

Detection of 

CO2 leak 

from a 

geologic 

sequestration 

site [55] 

Aerial hyperspectral imagery 

The Zero 

Emissions 

Research and 

Technology 

(ZERT), US  

Iterative Self-

Organizing Data 

Analysis Technique 

(ISODATA) method 

The approach was able to detect areas with 

CO2 leaks however other factors like the 

growing seasons of the vegetation also 

interfere with the results. 

Quantificatio

n of water 

inflow in 

rock tunnel 

faces [56] 

Images of water inflow  
Convolutional Neural 

Network (CNN) 

The approach achieved an average accuracy of 

93.01%. 

Soil 

classification 

[57] 

Cone Penetration Test (CPT) logs  

Decision Trees, 

Artificial Neural 

Network (ANN), 

Support Vector Machine 

The Artificial Neural Network (ANN) 

outperformed the others in classifying humous 

clay and peat, while the Decision Trees 

outperformed the others in classifying clayey 

peat. Support Vector Machine gave the poorest 

performance among the three. 

Geological 

structures 

classification 

[58] 

Images of geological structures  

K nearest neighbors 

(KNN), Artificial Neural 

Network (ANN), 

Extreme Gradient 

Boosting (XGBoost), 

Three-layer 

Convolutional Neural 

Network (CNN), 

Transfer Learning 

Three-layer Convolutional Neural Network 

(CNN) and Transfer Learning reached 

accuracies up to about 80% and 90% 

respectively, while others were relatively low, 

ranges from about 10% to 30%. 

Discriminatin

g earthquake 

waveforms 

[59] 

Earthquake dataset 

Southern 

California and 

Japan 

Generative Adversarial 

Network (GAN), 

Random Forest 

The approach can recognise P waves with 

99.2% accuracy and avoid false triggers by 

noise signals with 98.4% accuracy. 

Predicting 

time 

remaining for 

next 

earthquake 

[60] 

Continuous acoustic time series 

data 
 Random Forest 

The R2 value of the prediction reached 0.89, 

which demonstrated excellent performance. 

Streamflow 

Estimate with 

data missing 

[61] 

Streamgage data from NWIS-Web 

Four diverse 

watersheds in 

Idaho and 

Washington, US  

Random Forests 

The estimates correlated well to the historical 

data of the discharges. The accuracy ranges 

from 0.78 to 0.99. 
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Figure 4. The AI, DL, ML perspectives in action. 

 

Figure 5. The results and findings from the research explorations 1. 



Journal of Geography and Cartography 2025, 8(1), 10224. 
 

28 

 

Figure 6. The results and findings from the research explorations 2. 

 

Figure 7. The results and findings from the research explorations 3. 
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Figure 8. A future outlook for iEarth (experimental). 

8. Discussions and future directions 

The integration of Big Earth Data and Artificial Intelligence (AI) has 

revolutionized geological and mineral mapping by addressing the limitations of 

traditional methodologies, particularly in handling vast and complex datasets. The 

study highlights the transformative role of machine learning (ML) and deep learning 

(DL) algorithms in geosciences, offering robust solutions for data-driven analyses. 

One of the most notable findings of this research is the demonstrated efficacy of 

Convolutional Neural Networks (CNNs) in identifying intricate geological formations 

and mineral deposits. These models excel in capturing subtle spatial patterns, which 

are often overlooked or misinterpreted during manual analyses. For instance, CNNs 

successfully analyzed hyperspectral and multispectral datasets [60–66], providing 

accurate classifications of mineral types and their associated geological features. The 

fusion of spectral data with AI algorithms has proven particularly effective in regions 

with dense vegetation cover or complex geological formations, reducing uncertainties 

and improving prediction reliability. Additionally, the case studies included in this 

research—spanning diverse geological settings—validate the adaptability of AI-

driven approaches. For example, the use of Support Vector Machines (SVM) and 

Random Forest algorithms demonstrated high accuracy in specific applications, such 

as lithological mapping and mineral prospectivity.  
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These findings underline the importance of selecting context-appropriate 

algorithms to address the unique challenges presented by different geological 

environments. Despite these advancements, several limitations persist. The variability 

of Big Earth Data, compounded by noise, artifacts, and limited access to high-quality 

labeled datasets, poses significant challenges. These issues can lead to overfitting or 

inaccuracies in AI models. Furthermore, the interpretability of AI algorithms remains 

a pressing concern. While complex models like neural networks provide superior 

performance, their “black-box” nature complicates understanding the reasoning 

behind their classifications, which is critical for decision-making in resource 

exploration [60–75]. Addressing these challenges necessitates ongoing refinement of 

both the data inputs and the algorithms themselves. To maximize the potential of Big 

Earth Data and AI in geological and mineral mapping, the following key areas merit 

focused exploration and development. 

1) Enhanced Data Integration and Fusion 

The geosciences field relies on diverse datasets, including seismic surveys, 

geophysical data, geochemical analyses, and satellite imagery. Future research should 

prioritize advanced data fusion techniques to integrate these sources seamlessly. By 

combining multispectral and hyperspectral data with subsurface information, 

researchers can develop holistic geological models that provide a more accurate 

representation of subsurface structures and mineral distributions. Techniques such as 

generative adversarial networks (GANs) and multi-modal learning may offer 

innovative solutions for handling heterogeneous data sources. 

2) Explainable AI (XAI) and Model Interpretability 

As AI algorithms grow more sophisticated, there is a critical need for 

transparency in their decision-making processes. Explainable AI (XAI) tools, such as 

saliency maps and feature attribution methods, can shed light on the internal workings 

of AI models. This is especially crucial for applications like mineral prospectivity 

mapping, where actionable insights are required. Researchers should investigate new 

frameworks for balancing model complexity with interpretability, ensuring that 

stakeholders, including geologists and policymakers, can trust and understand the 

predictions. 

3) Scalability and Real-time Processing 

The exponential growth of Big Earth Data demands scalable and efficient AI 

solutions. Future studies should explore distributed computing environments, such as 

cloud platforms and edge computing, to facilitate real-time data processing. These 

technologies could enable on-the-fly geological analyses, especially during field 

surveys or emergency scenarios like landslides. Moreover, developing lightweight AI 

models optimized for mobile and UAV platforms could revolutionize real-time 

geological mapping and monitoring. 

4) Hybrid AI-Geoscience Approaches 

While AI models offer powerful analytical capabilities, geoscientific expertise 

remains indispensable for contextual interpretation. Future research should focus on 

hybrid frameworks that combine the strengths of AI with domain-specific knowledge. 

These approaches could include embedding geoscientific principles into AI algorithms 

or creating workflows where human expertise complements AI-driven analyses. 
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Collaborative efforts between AI developers and geoscientists are essential for 

achieving more reliable and context-aware models. 

5) Applications in Sustainable Resource Management 

The adoption of AI in geological mapping has significant implications for 

sustainable resource management. AI can optimize mineral exploration by identifying 

high-potential areas, thereby minimizing environmental impact and financial costs. 

Future research should expand on using AI to monitor environmental changes 

resulting from mining activities, such as soil degradation or water contamination. 

Additionally, integrating conservation-focused data, such as biodiversity indices, with 

mineral exploration datasets could promote sustainable practices in natural resource 

management. 

6) Improved Training Data and Validation Methods 

The quality of training datasets is paramount for AI model performance. 

Researchers should focus on generating high-quality labeled datasets through methods 

such as data augmentation, synthetic data generation, and crowd-sourced labeling. 

Moreover, robust validation methods, including cross-validation and independent test 

areas, should be employed to ensure the generalizability of AI models across different 

geological settings. 

7) Ethical Considerations and Policy Integration 

As AI technologies become integral to geological mapping, ethical 

considerations must be addressed. Issues such as data privacy, algorithmic bias, and 

environmental sustainability should be at the forefront of future research. 

Policymakers and researchers should work together to establish guidelines for the 

ethical use of AI in resource exploration and land management. 

The integration of Big Earth Data and AI represents a paradigm shift in geological 

and mineral mapping. While significant challenges remain, ongoing advancements in 

data integration, model interpretability, and computational efficiency offer a promising 

trajectory for this interdisciplinary field. By addressing these challenges and exploring 

future directions, researchers can unlock the full potential of AI-driven geosciences, 

paving the way for more accurate, efficient, and sustainable resource exploration and 

management practices. 

9. Conclusions 

The convergence of Big Earth Data and Artificial Intelligence (AI) has introduced 

transformative opportunities in geological and mineral mapping, marking a significant 

milestone in the field of geosciences. This study underscores the pivotal role of AI-

driven techniques in addressing the complexities of analyzing large-scale geospatial 

datasets, enabling enhanced accuracy, efficiency, and depth in geological 

investigations. The integration of advanced machine learning (ML) and deep learning 

(DL) methodologies with remote sensing technologies has proven instrumental in 

uncovering detailed insights into the spatial distribution of geological formations and 

mineral deposits. A key achievement of this research lies in the successful application 

of AI models, particularly Convolutional Neural Networks (CNNs), to extract intricate 

spatial patterns and identify subtle spectral signatures from multispectral and 

hyperspectral datasets.  
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These capabilities surpass traditional geological mapping methods, which are 

often limited by their manual nature and susceptibility to human error. Furthermore, 

the ability of AI to synthesize diverse data sources and detect relationships within 

complex geological structures has been a significant advancement, offering precision 

and reliability in mineral prospectivity analysis. 

However, this study also highlights notable challenges that must be addressed to 

fully realize AI’s potential in geosciences. The reliance on high-quality training 

datasets is critical, as inconsistencies or inadequacies in labeled data can compromise 

model performance and lead to misclassifications. Additionally, the computational 

intensity of processing Big Earth Data necessitates scalable solutions, such as 

distributed computing and cloud-based architectures, to enable efficient analysis. 

Another pressing concern is the interpretability of AI models, often hindered by their 

“black-box” nature, which can limit their usability in critical decision-making 

scenarios. 

To overcome these challenges, this research emphasizes the need for continuous 

innovation in AI techniques and closer collaboration between AI specialists and 

geoscientists. Enhanced transparency through explainable AI (XAI) frameworks and 

the integration of domain-specific knowledge into AI workflows are identified as key 

strategies to improve the interpretability and contextual relevance of AI models. 

Moreover, advancing data integration and fusion methodologies—incorporating 

geophysical, geochemical, and remote sensing data—can lead to the development of 

more comprehensive and holistic geological models. 

Looking forward, the potential applications of AI in geosciences are expansive. 

These include not only refined mineral exploration processes but also contributions to 

sustainable resource management, real-time geological surveys, and environmental 

monitoring. The findings of this study highlight the critical importance of balancing 

technological innovation with ethical considerations and sustainability, ensuring 

responsible use of AI in resource exploration and management. 

By addressing current limitations and harnessing emerging opportunities, 

researchers and practitioners can unlock the full potential of Big Earth Data and AI in 

geosciences. This study contributes valuable insights into the academic discourse on 

AI applications while providing practical recommendations for developing more 

advanced, reliable, and interpretable geological mapping techniques. These 

advancements pave the way for a new era of accurate, efficient, and sustainable 

practices in geological and mineral mapping, reinforcing the transformative role of AI 

in shaping the future of geosciences. 

Author contributions: Conceptualization, ZBA; methodology, ZBA; software, ATR; 

validation, ZBA; formal analysis, ZBA; investigation, ZBA; resources, ZBA; data 

curation, ATR; writing—original draft preparation, ZBA; writing—review and 

editing, ZBA; visualization, ZBA; supervision, ZBA; project administration, ZBA; 

funding acquisition, ZBA. All authors have read and agreed to the published version 

of the manuscript. 

Acknowledgments: The authors would like to acknowledge and thank the GOOGLE 

Deep Mind Research with its associated pre-prints access platforms. This research was 

https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini


Journal of Geography and Cartography 2025, 8(1), 10224. 

33 

deployed and utilized under the platform provided by GOOGLE Deep Mind which is 

under the support of the GOOGLE Research and the GOOGLE Research Publications 

under GOOGLE Gemini platform. Also, a huge shout out and thanks to the NASA 

EARTHDATA open-source database along with their massive NASA EARTHDATA 

datasets, data models, data tools and NASA EARTH SCIENCE DATA repo for 

providing access to their enormous pool of scientific data sources. Using their 

provided platform of datasets and database associated files with digital software 

layouts consisting of free web access to a large collection of recorded models that are 

found within research access and its related open-source software distributions which 

is the implementation and simulation of analytics for the proposed research which was 

undergone and set in motion. There are many data sources some of which are resourced 

and retrieved from a wide variety of GOOGLE service domains. All the data sources 

and various domains from which data has been included and retrieved for this research 

are identified, mentioned and referenced where appropriate. However, the various 

types of original data sources some of which are not all publicly available, because 

they contain various types of private information. The available platform provided 

data sources that support the research results with findings and information of the 

research investigations are referenced where appropriate. 

Availability of data and materials: The various original data sources some of which 

are not all publicly available, because they contain various types of private information. 

The available platform provided data sources that support the findings and information 

of the research investigations are referenced where appropriate. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Paravano A, Patrizi M, Razzano E, et al. The impact of the new space economy on sustainability: an overview. Acta 
Astronautica. 2024; 222: 162-173. doi: 10.1016/j.actaastro.2024.05.046

2. Earth observation. Available online: joint-research-centre.ec.europa.eu (accessed on 6 January 2025).

3. Newcomers Earth Observation Guide | ESA Business Applications. Available online: business.esa.int (accessed on 6 January 
2025).

4. GEO at a Glance. Available online: https://earthobservations.org/ (accessed on 6 January 2025).

5. Pennisi E. Meet the Landsat pioneer who fought to revolutionize Earth observation. Science. 2021; 373 (6561): 1292.

doi:10.1126/science.acx9080

6. Eklundh L. Remote sensing and Earth observation. Available online: www.nateko.lu.se (accessed on 6 January 2025).

7. Ashley S. Game changer satellite will measure most of the water on the planet. CNN; 2022.

8. Tomás R, Li Z. Earth Observations for Geohazards: Present and Future Challenges. Remote Sensing. 2017; 9(3): 194.

doi:10.3390/rs9030194

9. Balenovic I, Marjanovic H, Vuletic D, et al. Quality assessment of high density digital surface model over different land 
cover classes. Periodicum Biologorum. 2015; 117(4): 459–470. doi: 10.18054/pb.2015.117.4.3452

10. Appendix A—Glossary and Acronyms. Severn Tidal Tributaries Catchment Flood Management Plan—Scoping Stage. UK: 
Environment Agency; 2009.

https://assets.publishing.service.gov.uk/media/5a7c871ae5274a7b7e321087/Severn_Tidal_Tributaries_Catchment_Managem 
ent_Plan.pdf

11. Ronald T. Terrain models—A tool for natural hazard Mapping. In: Avalanche Formation, Movement and Effects. IAHS Publ; 

1987.

12. Making 3D Terrain Maps, Shaded Relief. Available online: https://www.shadedrelief.com/ (accessed on 6 January 2025). 

https://deepmind.google/technologies/gemini
https://research.google/
https://deepmind.google/research/publications/
https://gemini.google.com/
https://www.earthdata.nasa.gov/technology/artificial-intelligence-ai
https://www.earthdata.nasa.gov/technology/artificial-intelligence-ai
https://www.earthdata.nasa.gov/
https://science.nasa.gov/earth/data/


Journal of Geography and Cartography 2025, 8(1), 10224. 

34 

13. Robert S. Elegant Figures What Not To Do: Vertical Exaggeration. NASA Earth Observatory; 2010.

14. Hargitai H, Willner K, Buchroithner M. Methods in Planetary Topographic Mapping: A Review. In: Planetary Cartography 
and GIS. Springer International Publishing; 2019. pp. 147–174.

15. Banerdt B. Orbital Laser Altimeter. In: The Martian Chronicle. NASA. 2024; 1(3).

https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1996-062A-03

16. NASA, LOLA. Available online: https://science.nasa.gov/mission/lro/lola/ (accessed on 6 January 2025).

17. Cavanaugh JF, Smith JC, Sun X, et al. The Mercury Laser Altimeter Instrument for the MESSENGER Mission. In: Space 
Science Review. Springer Nature; 2007.

18. Hargitai H, Willner K, Hare T. Fundamental Frameworks in Planetary Mapping: A Review. In: Planetary Cartography and 
GIS. Springer International Publishing; 2019. pp. 75–101.

19. ALOS World 3D-30m. Available online: www.eorc.jaxa.jp (accessed on 6 January 2025).

20. ALOS World 3D. Available online: www.aw3d.jp (accessed on 6 January 2025).

21. Emisoft. 8 Things To Look For When Selecting Environmental Data Software. Available online: www.emisoft.com

(accessed on 6 January 2025).

22. ESG assets may hit $53 trillion by 2025, a third of global AUM. Available online:

https://www.bloomberg.com/professional/insights/trading/esg-assets-may-hit-53-trillion-by-2025-a-third-of-global-aum/

(accessed on 6 January 2025).

23. Kuznetsov VD, Sinelnikov VM, Alpert SN. Yakov Alpert: Sputnik-1 and the first satellite ionospheric experiment. Advances 
in Space Research. 2015; 55(12): 2833–2839. doi: 10.1016/j.asr.2015.02.033

24. How many Earth observation satellites are orbiting the planet in 2021? Available online:

https://geospatialworld.net/blogs/how-many-satellites-are-orbiting-the-earth-in-2021/ (accessed on 6 January 2025).

25. Introduction to satellite. Available online: www.sasmac.cn (6 January 2025).

26. NASA. Drought in Iraq: Image of the Day. Available online: https://archive.org/details/ge_08797 (accessed on 6 January 
2025).

27. Earth Observing System Data and Information System. Available online: https://www.nasa.gov/stem-content/earth-observing-

system-data-and-information-system/ (accessed on 6 January 2025).

28. Earth Science Data and Information System (ESDIS) Project. Available online: https://www.earthdata.nasa.gov/about/esdis 
(accessed on 6 January 2025).

29. Behnke J, Kittel D. Looking Back at 25 Years With NASA’s EOSDIS Distributed Active Archive Centers. AGU Fall 
Meeting Abstracts (Report). 2017; 2017: IN43A–0060.

30. Topics | Earthdata. Available online: https://www.earthdata.nasa.gov/ (accessed on 6 January 2025).

31. Wanchoo L, James N, Ramapriyan HK. NASA EOSDIS Data Identifiers: Approach and System. Data Science Journal. 2017; 

16.

32. Blumenfeld J. The Global Change Master Directory: Data, Services, and Tools Serving the International Science Community. 

Earthdata (Report); 2017

33. ECHO—Application Program Interfaces (APIs) for Search and Order Global Change Master Directory. Available online: 
https://www.earthdata.nasa.gov/news/feature-articles/common-metadata-repository-foundation-nasas-earth-observation-data 
(accessed on 6 January 2025).

34. Bach D. With Azure, the US Army Corps of Engineers gains a ‘powerful tool’ for storm modeling. Available online: https://

news.microsoft.com/source/features/digital-transformation/with-azure-the-us-army-corps-of-engineers-gains-a-powerful-tool-

for-storm-modeling/ (accessed on 6 January 2025).

35. Retooling AI for Earth grants with Microsoft Dynamics 365. Available online:

https://www.microsoft.com/insidetrack/blog/retooling-ai-for-earth-grants-with-microsoft-dynamics-365/ (accessed on 6 
January 2025).

36. Lunden I. Microsoft launches AI for Earth to give $2M in services to environmental projects. TechCrunch; 2017.

37. Microsoft Planetary Computer. Available online: https://planetarycomputer.microsoft.com/ (accessed on 6 January 2025).

38. Microsoft wants to be a major AI player. In: Here’s its master plan. Wired UK. https://www.wired.com/story/inside-

microsofts-ai-comeback/

39. Smith B. AI for Earth can be a game-changer for our planet. Available online: https://blogs.microsoft.com/on-the-

issues/2017/12/11/ai-for-earth-can-be-a-game-changer-for-our-planet/ (accessed on 6 January 2025). 



Journal of Geography and Cartography 2025, 8(1), 10224. 

35 

40. AI for Earth - Microsoft AI. Available online: www.microsoft.com (accessed on 6 January 2025).

41. Mueller JP, Massaron L. Machine learning for dummies. John Wiley & Sons; 2021.

42. Sang X, Xue L, Ran X, et al. Intelligent High-Resolution Geological Mapping Based on SLIC-CNN. ISPRS International 
Journal of Geo-Information. 2020; 9(2): 99. doi: 10.3390/ijgi9020099

43. Si L, Xiong X, Wang Z, et al. A Deep Convolutional Neural Network Model for Intelligent Discrimination between Coal and 
Rocks in Coal Mining Face. Mathematical Problems in Engineering. 2020; 2020: 1–12. doi: 10.1155/2020/2616510

44. Merembayev T, Yunussov R, Yedilkhan A. Machine Learning Algorithms for Classification Geology Data from Well 
Logging. 2018 14th International Conference on Electronics Computer and Computation (ICECCO). Published online 
November 2018: 206–212. doi: 10.1109/icecco.2018.8634775

45. Costa I, Tavares F, Oliveira J. Predictive lithological mapping through machine learning methods: a case study in the 
Cinzento Lineament, Carajás Province, Brazil. Journal of the Geological Survey of Brazil. 2019; 2(1): 26–36. doi: 10.29396/

jgsb.2019.v2.n1.3

46. Kumar C, Chatterjee S, Oommen T, et al. Automated lithological mapping by integrating spectral enhancement techniques 
and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, 
India. International Journal of Applied Earth Observation and Geoinformation. 2020; 86: 102006. doi:

10.1016/j.jag.2019.102006

47. Radford DDG, Cracknell MJ, Roach MJ, et al. Geological Mapping in Western Tasmania Using Radar and Random Forests. 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2018; 11(9): 3075–3087. doi: 10.1109/

jstars.2018.2855207

48. Wang Y, Ksienzyk AK, Liu M, et al. Multigeophysical data integration using cluster analysis: assisting geological mapping in 

Trøndelag, Mid-Norway. Geophysical Journal International. 2020; 225(2): 1142–1157. doi: 10.1093/gji/ggaa571

49. Latifovic R, Pouliot D, Campbell J. Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South 

Rae Geological Region, Northwest Territories, Canada. Remote Sensing. 2018; 10 (2): 307. doi:10.3390/rs10020307

50. Marjanović M, Kovačević M, Bajat B, et al. Landslide susceptibility assessment using SVM machine learning algorithm. 
Engineering Geology. 2011; 123(3): 225–234. doi: 10.1016/j.enggeo.2011.09.006

51. Kawabata D, Bandibas J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an 
Artificial Neural Network (ANN). Geomorphology. 2009; 113(1–2): 97–109. doi: 10.1016/j.geomorph.2009.06.006

52. Chauhan S, Sharma M, Arora MK, et al. Landslide Susceptibility Zonation through ratings derived from Artificial Neural 
Network. International Journal of Applied Earth Observation and Geoinformation. 2010; 12(5): 340–350. doi:

10.1016/j.jag.2010.04.006

53. Biswajeet P, Saro L. Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis 
Using an Artificial Neural Network Model. Earth Science Frontiers. 2017; 14 (6): 143–151. doi:10.1016/s1872-

5791(08)60008-1

54. International society for rock mechanics commission on standardization of laboratory and field tests. International Journal of 
Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1978; 15(6): 319–368. doi:10.1016/0148-9062(78)91472-

9. https://www.sciencedirect.com/science/article/abs/pii/0148906278914729

55. Bellante GJ, Powell SL, Lawrence RL, et al. Aerial detection of a simulated CO2 leak from a geologic sequestration site 
using hyperspectral imagery. International Journal of Greenhouse Gas Control. 2013; 13: 124–137. doi:

10.1016/j.ijggc.2012.11.034

56. Chen J, Zhou M, Zhang D, et al. Quantification of water inflow in rock tunnel faces via convolutional neural network 
approach. Automation in Construction. 2021; 123: 103526. doi: 10.1016/j.autcon.2020.103526

57. Bhattacharya B, Solomatine DP. Machine learning in soil classification. Neural Networks. 2006; 19(2): 186–195. doi: 
10.1016/j.neunet.2006.01.005

58. Zhang Y, Wang G, Li M, et al. Automated Classification Analysis of Geological Structures Based on Images Data and Deep 
Learning Model. Applied Sciences. 2018; 8(12): 2493. doi: 10.3390/app8122493

59. Li Z, Meier M, Hauksson E, et al. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early 
Warning. Geophysical Research Letters. 2018; 45(10): 4773–4779. doi: 10.1029/2018gl077870 



Journal of Geography and Cartography 2025, 8(1), 10224. 

36 

60. Rouet‐Leduc B, Hulbert C, Lubbers N, et al. Machine Learning Predicts Laboratory Earthquakes. Geophysical Research

Letters. 2017; 44(18): 9276–9282. doi: 10.1002/2017gl074677

61. Petty TR, Dhingra P. Streamflow Hydrology Estimate Using Machine Learning (SHEM). JAWRA Journal of the American

Water Resources Association. 2017; 54(1): 55–68. doi: 10.1111/1752-1688.12555

62. Merghadi A, Yunus AP, Dou J, et al. Machine learning methods for landslide susceptibility studies: A comparative overview

of algorithm performance. Earth-Science Reviews. 2020; 207: 103225. doi: 10.1016/j.earscirev.2020.103225

63. Akhtar ZB, Tajbiul Rawol A. Unlocking the Future for the New Data Paradigm of DNA Data Storage : An Investigative

Analysis of Advancements, Challenges, Future Directions. Journal of Information Sciences. doi:

10.34874/IMIST.PRSM/JIS-V23I1.47102

64. Bin Akhtar Z. Artificial intelligence (AI) within manufacturing: An investigative exploration for opportunities, challenges,

future directions. Metaverse. 2024; 5(2): 2731. doi: 10.54517/m.v5i2.2731

65. Bin Akhtar Z. From bard to Gemini: An investigative exploration journey through Google’s evolution in conversational AI

and generative AI. Computing and Artificial Intelligence. 2024; 2(1): 1378. doi: 10.59400/cai.v2i1.1378

66. Akhtar ZB. Unveiling the evolution of generative AI (GAI): a comprehensive and investigative analysis toward LLM models

(2021–2024) and beyond. Journal of Electrical Systems and Information Technology. 2024; 11(1). doi: 10.1186/s43067-024-

00145-1

67. Unraveling the Promise of Computing DNA Data Storage: An Investigative Analysis of Advancements, Challenges, Future

Directions. Journal of Advances in Artificial Intelligence. 2024; 2(1). doi: 10.18178/jaai.2024.2.1.122-137

68. Akhtar ZB. The design approach of an artificial intelligent (AI) medical system based on electronical health records (EHR)

and priority segmentations. The Journal of Engineering. 2024; 2024(4). doi: 10.1049/tje2.12381

69. Akhtar ZB. Securing Operating Systems (OS): A Comprehensive Approach to Security with Best Practices and Techniques.

International Journal of Advanced Network, Monitoring and Controls. 2024; 9(1): 100–111. doi: 10.2478/ijanmc-2024-0010

70. Akhtar ZB. Generative artificial intelligence (GAI): From large language models (LLMs) to multimodal applications towards

fine tuning of models, implications, investigations. Computing and Artificial Intelligence. 2024; 3(1): 1498. doi:

10.59400/cai.v3i1.1498

71. Akhtar ZB, Rawol AT. Harnessing artificial intelligence (AI) for cybersecurity: Challenges, opportunities, risks, future

directions. Computing and Artificial Intelligence. 2024; 2(2): 1485. doi: 10.59400/cai.v2i2.1485

72. Akhtar ZB, Tajbiul Rawol A. Enhancing Cybersecurity through AI-Powered Security Mechanisms. IT Journal Research and

Development. 2024; 9(1): 50–67. doi: 10.25299/itjrd.2024.16852

73. Zarif BA, Ahmed TR. Artificial Intelligence (AI), Extended Reality (XR): A Biomedical Engineering (BME) Perspective

Investigation Analysis. RPC Journal of Bio-Med and Clinical Research. RPC Publishers. 2024; 1(1).

74. Akhtar ZB. Artificial Intelligence (AI) within the Realm of Cyber Security. Insight. Electr. Electron. Eng. 2024; 1(1): 1–11.

75. Akhtar Z. Trends Tech Sci Res Computer Vision and Beyond: A Deep Dive Exploration and Investigation. IEEE Region 10

Trends Tech Sci Res. 2024; 7(3). doi: 10.19080/TTSR.2024.07.555711




