Adapting hydrological regionalization techniques to reconstruct rainfall fields in Haiti

Clertine Guerrier, Alfonso Gutierrez-Lopez

Article ID: 9752
Vol 8, Issue 1, 2025

VIEWS - 32 (Abstract)

Abstract


The hydroclimatological monitoring network in Haiti was inadequate before 2010 due to a lack of meteorological stations and inconsistent data recording. In the aftermath of the January 2010 earthquake, the monitoring network was reconstructed. In light of the prevailing circumstances and the mounting necessity for hydroclimatological data for water resource management at the national level, it is of paramount importance to leverage and optimize the limited available data to the greatest extent possible. The objective of this research is to develop regional equations that facilitate the transfer of climatic data from climatological stations to locations with limited or absent data. Physiographic and climatological characteristics are used to construct the hydrologic information transfer equations for sites with limited or no data. The validity of the regionalization techniques was assessed using cross-validation. The results enable estimation of hydrological events through the specific patterns of behavior of each region of the country, identified in cartography of homogeneous zones.


Keywords


hydrological regionalization; homogeneous regions; information transfer; hydrological regime; Haiti

Full Text:

PDF


References


1. UNICEF & OMS. Progress on household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs. UNICEF & OMS; 2021.

2. Gonel J. Studying the potential of surface water in Haiti to address drinking water shortages (French). Available online: https://espace.inrs.ca/id/eprint/428/# (accessed on 2 June 2024).

3. FAO. Aligned National Action Program to Combat Desertification (French). FAO; 2015.

4. Gutiérrez-López A, Aparicio J. Las seis reglas de la regionalización en hidrología. Aqua-LAC. 2020; 12(1): 81-89. doi: 10.29104/phi-aqualac/2020-v12-1-07

5. Hlaing PT, Humphries UW, Waqas M. Hydrological model parameter regionalization: Runoff estimation using machine learning techniques in the Tha Chin River Basin, Thailand. MethodsX. 2024; 13: 102792. doi: 10.1016/j.mex.2024.102792

6. Dasgupta R, Das S, Banerjee G, et al. Revisit hydrological modeling in ungauged catchments comparing regionalization, satellite observations, and machine learning approaches. HydroResearch. 2024; 7: 15-31. doi: 10.1016/j.hydres.2023.11.001

7. Araujo ACS de, Frizzone JA, Camargo AP de, et al. Discharge sensitivity of collapsible drip tapes to water temperature. Revista Brasileira de Engenharia Agrícola e Ambiental. 2021; 25(1): 3-9. doi: 10.1590/1807-1929/agriambi.v25n1p3-9

8. Ye K, Liang Z, Chen H, et al. Regionalization Strategy Guided Long Short‐Term Memory Model for Improving Flood Forecasting. Hydrological Processes. 2024; 38(10). doi: 10.1002/hyp.15296

9. Neelam TJ, Steinschneider S, Woodward DE, et al. Improved Regionalization of the CN Method for Extreme Events at Ungauged Sites across the US. Journal of Hydrologic Engineering. 2024; 29(6). doi: 10.1061/jhyeff.heeng-6180

10. Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology. 2000; 228(1-2): 113-129. doi: 10.1016/S0022-1694(00)00144-X

11. Guo Y, Zhang Y, Zhang L, et al. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review. WIREs Water. 2020; 8(1). doi: 10.1002/wat2.1487

12. Finck LF, Leite IR, Almeida AK, et al. A streamflow regionalization method using hydrological data and geoprocessing tools—a Brazilian midwest analysis. Journal of South American Earth Sciences. 2024; 133: 104695. doi: 10.1016/j.jsames.2023.104695

13. Hazin LS. Working together for more efficient management of drinking water and sanitation services in Haiti (French). Publication des Nations Unies; 2005.

14. Ebisemiju FS. An objective criterion for the selection of representative basins. Water Resources Research. 1979; 15(1): 148-158. doi: 10.1029/wr015i001p00148

15. Nathan RJ, McMahon TA. Identification of homogeneous regions for the purposes of regionalisation. Journal of Hydrology. 1990; 121(1-4): 217-238. doi: 10.1016/0022-1694(90)90233-N

16. Caratti JF, Nesser JA, Lee Maynard C. Watershed classification using canonical correspondence analysis and clustering techniques: a cautionary note1. JAWRA Journal of the American Water Resources Association. 2004; 40(5): 1257-1268. doi: 10.1111/j.1752-1688.2004.tb01584.x

17. Kanishka G, Eldho TI. Streamflow estimation in ungauged basins using watershed classification and regionalization techniques. Journal of Earth System Science. 2020; 129(1). doi: 10.1007/s12040-020-01451-8

18. Hu C, Xia J, She D, et al. Parameter Regionalization With Donor Catchment Clustering Improves Urban Flood Modeling in Ungauged Urban Catchments. Water Resources Research. 2024; 60(7). doi: 10.1029/2023wr035071

19. Smithers JC, Schulze RE. A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. Journal of Hydrology. 2001; 241(1-2): 42-52. doi: 10.1016/S0022-1694(00)00374-7

20. Leviandier T, Lavabre J, Arnaud P. Rainfall contrast enhancing clustering processes and flood analysis. Journal of Hydrology. 2000; 240(1-2): 62-79. doi: 10.1016/S0022-1694(00)00315-2

21. Bhaskar NR, O'Connor CA. Comparison of Method of Residuals and Cluster Analysis for Flood Regionalization. Journal of Water Resources Planning and Management. 1989; 115(6): 793-808. doi: 10.1061/(ASCE)0733-9496(1989)115:6(793)

22. Hall MJ, Minns AW, Ashrafuzzaman AKM. The application of data mining techniques for the regionalisation of hydrological variables. Hydrology and Earth System Sciences. 2002; 6(4): 685-694. doi: 10.5194/hess-6-685-2002

23. Kachroo RK, Mkhandi SH, Parida BP. Flood frequency analysis of southern Africa: I. Delineation of homogeneous regions. Hydrological Sciences Journal. 2000; 45(3): 437-447. doi: 10.1080/02626660009492340

24. Berger KP, Entekhabi D. Basin hydrologic response relations to distributed physiographic descriptors and climate. Journal of Hydrol. 2001; 247(3-4): 169-182. doi: 10.1016/S0022-1694(01)00383-3

25. Burn DH, Elnur MAH. Detection of hydrologic trends and variability. Journal of Hydrology. 2002; 255(1): 107-122. doi: 10.1016/S0022-1694(01)00514-5

26. Wiltshire SE. Identification of homogeneous regions for flood frequency analysis. Journal of Hydrol. 1986; 84(3-4): 287-302. doi: 10.1016/0022-1694(86)90128-9

27. Burn DH. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrol. 1997; 202(1-4): 212-230. doi: 10.1016/S0022-1694(97)00068-1

28. Castellarin A, Burn DH, Brath A. 2001. Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. Journal of Hydrol. 2001; 241(3-4): 270-285. doi: 10.1016/S0022-1694(00)00383-8




DOI: https://doi.org/10.24294/jgc9752

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Clertine Guerrier, Alfonso Gutierrez-Lopez

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.