Vol 7, No 2 (2024)

Volume 7 Issue 2 emphasizes energy utilization and environmental protection, providing readers with the most recent thermodynamic research. This issue includes the most recent discoveries in research topics such as heat transfer, the application of thermodynamics in mitigating global warming, alternative fuel properties, and energy recovery. The role of thermodynamic geoengineering in energy supply and lowering carbon emissions is the highlight of this issue. These studies contribute to alleviating the negative impact caused by climate change and promoting sustainable development.

Table of Contents

Open Access
Article
Article ID: 6914
PDF
by Umar Farooq, Tao Liu, Umer Farooq
Therm. Sci. Eng. 2024, 7(2);    251 Views
Abstract

Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide  and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of  and , while temperature profile increases for increasing values of  and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of  and  the drag coefficient increases and the Nusselt number decreases for rising values of  and  The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.

Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide  and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of  and , while temperature profile increases for increasing values of  and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of  and  the drag coefficient increases and the Nusselt number decreases for rising values of  and  The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.

show more
Open Access
Article
Article ID: 5943
PDF
by Samomssa Inna, Bisso Abazeh, Kamga Richard
Therm. Sci. Eng. 2024, 7(2);    500 Views
Abstract

The co-hydrothermal carbonization of biomasses has shown many advantages on charcoal yield, carbonization degree, thermal-stability of hydrocar and energy recovered. The goal of this study is to investigate the effect of co-combustion of cattle manure and sawdust on energy recovered. The results show that ash content ranged between 10.38%–20.00%, indicating that the proportion of each variable influences energy recovered. The optimum is obtained at 51% cattle manure and 49% sawdust revealing 37% thermal efficiency and 3.9 kW fire power. These values are higher compared to cattle manure individually which gives values of 30% and 2.3 kW respectively for thermal efficiency and fire power. Thus, the mixture of biomasses enhances energy recovered both in combustion and hydrothermal carbonization. Volatile matter is lower in mixture predicting that the flue gas releases is lower during combustion. Fixed carbon is higher in mixture predicting that energy recovered increases during the combustion of mixture than cattle manure individually. Higher Carbon content was noticed in mixture than cattle manure indicating that the incorporation of sawdust enhances heating value. The incorporation of sawdust in cattle manure can also enhance energy recovered and is more suitable for domestic and industrial application.

show more
Open Access
Article
Article ID: 8821
PDF
by Pedro Oliveira, Francisco Brójo
Therm. Sci. Eng. 2024, 7(2);    168 Views
Abstract

This paper aims to verify the possibility of utilising water-in-diesel emulsions (WiDE) as an alternative drop-in fuel for diesel engines. An 8% WiDE was produced to be tested in a four-stroke, indirect injection (IDI) diesel engine and compared to EN590 diesel fuel. An eddy current brake and an exhaust gas analyser were utilised to measure different engine parameters such as torque, fuel consumption, and emissions at different engine loads. The results show that the engine running on emulsified fuel leads to a reduction in torque and power, an increase in the specific fuel consumption, and slightly better thermal efficiency. The highest percentual increment of thermal efficiency for WiDE is obtained at 100% engine load, 5.68% higher compared to diesel. The emissions of nitric oxide (NO) and carbon dioxide (CO2) are reduced, but carbon monoxide (CO) and hydrocarbons (HC) emissions are increased, compared to traditional diesel fuel. The most substantial decrease in NO and CO2 levels was achieved at 75% engine load with 33.86% and 25.08% respectively, compared to diesel.

show more
Open Access
Article
Article ID: 8050
PDF
by Victor L. Mironov
Therm. Sci. Eng. 2024, 7(2);    366 Views
Abstract

We propose a modified relation between heat flux and temperature gradient, which leads to a second-order equation describing the evolution of temperature in solids with finite rate of propagation. A comparison of the temperature field spreading in the framework of Fourier, Cattaneo-Vernotte (CV) and modified Cattaneo-Vernotte (MCV) equations is discussed. The comparative analysis of MCV and Fourier solutions is carried out on the example of simple one-dimensional problem of a plate cooling.

show more
Open Access
Review
Article ID: 8207
PDF
by Jim Baird
Therm. Sci. Eng. 2024, 7(2);    1154 Views
Abstract

Conversion of the ocean’s vertical thermal energy gradient to electricity via OTEC has been demonstrated at small scales over the past century. It represents one of the planet’s most significant (and growing) potential energy sources. As described here, all living organisms need to derive energy from their environment, which heretofore has been given scant serious consideration. A 7th Law of Thermodynamics would complete the suite of thermodynamic laws, unifying them into a universal solution for climate change. 90% of the warming heat going into the oceans is a reasonably recoverable reserve accessible with existing technology and existing economic circumstances. The stratified heat of the ocean’s tropical surface invites work production in accordance with the second law of thermodynamics with minimal environmental disruption. TG is the OTEC improvement that allows for producing two and a half times more energy. It is an endothermic energy reserve that obtains energy from the environment, thereby negating the production of waste heat. This likewise reduces the cost of energy and everything that relies on its consumption. The oceans have a wealth of dissolved minerals and metals that can be sourced for a renewable energy transition and for energy carriers that can deliver ocean-derived power to the land. At scale, 31,000 one-gigawatt (1-GW) TG plants are estimated to displace about 0.9 W/m2 of average global surface heat into deep water, from where, at a depth of 1000 m, unconverted heat diffuses back to the surface and is available for recycling.

show more
Open Access
Review
Article ID: 5268
PDF
by Jim Baird
Therm. Sci. Eng. 2024, 7(2);    1327 Views
Abstract

Global warming is a thermodynamic problem. When excess heat is added to the climate system, the land warms more quickly than the oceans due to the land’s reduced heat capacity. The oceans have a greater heat capacity because of their higher specific heat and the heat mixing in the upper layer of the ocean. Thermodynamic Geoengineering (TG) is a global cooling method that, when deployed at scale, would generate 1.6 times the world’s current supply of primary energy and remove carbon dioxide (CO2) from the atmosphere. The cooling would mirror the ostensible 2008–2013 global warming hiatus. At scale, 31,000 1-gigawatt (GW) ocean thermal energy conversion (OTEC) plants are estimated to be able to: a) displace about 0.8 watts per square meter (W/m2) of average global surface heat from the surface of the ocean to deep water that could be recycled in 226-year cycles, b) produce 31 terawatts (TW) (relative to 2019 global use of 19.2 TW); c) absorb about 4.3 Gt CO2 per year from the atmosphere by cooling the surface. The estimated cost of these plants is $2.1 trillion per year, or 30 years to ramp up to 31,000 plants, which are replaced as needed thereafter. For example, the cost of world oil consumption in 2019 was $2.3 trillion for 11.6 TW. The cost of the energy generated is estimated at $0.008/KWh.

show more