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Abstract: Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of 

engineering and scientific problems due to high-temperature predictions. The contribution of 

nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, 

fusion processes, energy results, and many industrial systems based on unique heat transfer 

results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in 

advanced fields such as biotechnology, biomechanics, microbiology, computational biology, 

and medicine. This study investigates the enhancement of heat transfer with the impact of 

magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-

Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, 

temperature, concentration, and microorganism profile on fluid flow assumptions. This 

investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like 

zinc oxide (𝑍𝑛𝑂) and titanium dioxide (𝑇𝑖𝑂2). The study aims to explore their interactions 

and potential applications in the field of biomedicine. In order to streamline the complex 

scheme of partial differential equations (PDEs), boundary layer assumptions are employed. 

Through appropriate transformations, the governing partial differential equations (PDEs) and 

their associated boundary conditions are transformed into a dimensionless representation. By 

employing a local non-similarity technique with a second-degree truncation and utilizing 

MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are 

obtained. Once the calculated results and published results are satisfactorily aligned, graphical 

representations are used to illustrate and analyze how changing variables affect the fluid flow 

characteristics problems under consideration. In order to visualize the numerical variations of 

the drag coefficient and the Nusselt number, tables have been specially designed. Velocity 

profile of 𝑍𝑛𝑂-blood and 𝑇𝑖𝑂2-blood decreases for increasing values of 𝑀, 𝜆, and 𝐹𝑟, while 

temperature profile increases for increasing values of 𝑀, 𝜆,  and 𝐸𝑐 . Concentration profile 

decreases for increasing values of 𝑆𝑐 , and microorganism profile increases for increasing 

values of 𝑃𝑒. For rising values of 𝑀, 𝜆 and 𝐹𝑟 the drag coefficient increases and the Nusselt 

number decreases for rising values of 𝑀, 𝜆, 𝐸𝑐 and 𝑄. The model introduces a novel approach 

by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-

dimensional blood-based nanofluid in the presence of a magnetic field.  
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1. Introduction 

Nanofluids have a range of applications in engineering and biomedicine, 

including increasing the heat conductivity of fundamental fluids like ethylene glycol, 

water, kerosene, and others. These applications span the manufacturing industries, 

treatment for cancer, and conditioning. Buongiorno and Hu [1] conducted research on 
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the enhancement of nanofluid heat transfer for nuclear reactor applications. 

Buongiorno [2] conducted an extensive study that explored convective transport in 

nanofluids. The impact of nanofluids thermophysical characteristics on convective 

heat transfer was explored by Daungthongsuk and Wongwises [3]. Khan and Ali [4] 

investigated that the non-Newtonian behavior of power-law fluids and wall sliding 

conditions influences thermal and flow properties such as temperature distribution and 

viscous heating effects. Ali et al. [5] used a numerical solution based on the Carreau 

model to critically analyze the flow of a generalized Newtonian fluid over a 

nonlinearly stretched curved surface. Their research focused on understanding fluid 

behavior under different shear rates, as well as the effect of surface curvature on flow 

properties. Mehmood et al. [6] studied the complicated dynamics of these nanotube 

fluids, especially the effect of activation energy on quaternary autocatalytic 

exothermic and endothermic chemical processes. 

The focus of the field of magneto-hydrodynamics (MHD) is the study of the 

intricate interaction between magnets and electrically conducting fluids. Due to its 

extensive practical applications in the chemical and mechanical sectors, this field of 

study has garnered significant interest. The analysis of MHD’s impact on heat transfer 

and fluid flow over surfaces that are stretched linearly or nonlinearly has received a 

lot of attention. A comprehensive review conducted by Kandasamy et al. [7] 

encompassed various investigations that inspected the effect of magnetic fields and 

various hydrodynamic and thermal boundary conditions on fluid flow across a 

stretched sheet. Crane [8] published the first analytical solution for the flow of an 

incompressible viscous liquid over an expanding sheet. Yazdi et al. [9] focused on 

studying the Magnetohydrodynamic flow and heat transmission through a non-linear 

porous stretched sheet while considering chemical changes and partial slip. Farooq et 

al. [10] investigated the MHD flow of a Casson nanofluid with nanoparticles over an 

extending sheet. Abouasbe et al. [11] investigate the idea of soft solutions in the 

context of time-fractional Navier-Stokes equations, accounting for the impact of MHD 

effects. This study investigates the complicated dynamics of MHD in fluid systems. 

In the past few decades, substantial advancements have been achieved in the 

investigation of boundary layer flow and thermal expansion over a extending sheet. 

This is particularly noteworthy because the findings have numerous practical 

applications in various industries and technological fields. Several examples include 

the refrigeration of an unending metal plate within a freezing vessel, the boundary 

layer along the material conveyor, the flow of liquid film during condensation 

procedures, cable rolling, paper manufacturing, heated rolling, glass manipulation, and 

the drawing of plastic foil. The focus of Magyari and Keller [12] was on examining 

how heat moves in a boundary layer flow due to an exponentially continuous 

stretching panel without any changes in fluid properties, while also exploring the use 

of magnetohydrodynamic (MHD). The findings of this study have wide-ranging 

applications in different environmental and industrial systems, including the design of 

heat transfer mechanisms, catalytic reactors, geothermal systems, and geophysics. 

These systems typically involve the saturation of porous materials.   

Porous medium flow offers numerous benefits across a diverse range of 

applications, encompassing fermentation, grain storage, reservoir movement, 

groundwater contamination, petroleum production, fossil fuel systems, energy storage 
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units, nuclear waste disposal, solar panels, oil resources, groundwater sources, and 

beyond. Although Darcy’s theory [13] formed the foundation for numerous 

investigations on porous media with low porosity and fluid velocities, it had its 

limitations with highly permeable media and greater transportation. In situations of 

high flow rates, the conventional Darcy’s law did not consider inertial and edge effects. 

Thus, Darcy’s theory was unsuitable for describing the physical conditions of high-

porosity media and velocities. Forchheimer [14] suggested adding a squared flow 

velocity to the Darcy velocity model to overcome this drawback and allow for the 

investigation of both boundary parameters and inertia. An inclined stretching sheet 

with an associated magnetic field in a non-Darcy permeable medium was examined 

by Wang et al. [15]. 

The movement of motile microorganisms collectively induces bioconvection, 

which in turn generates macroscopic convective fluid motion due to density gradients. 

Bioconvection occurs when self-propelled microorganisms swim in a specific 

direction, causing an increase in the density of the underlying fluid. Hady et al. [16] 

examined natural convection around a vertically oriented cone immersed in a 

permeable medium saturated with gyrotactic microorganisms in a non-Darcian 

nanofluid. Several researchers [17–28] have explored different systems to comprehend 

the mechanisms governing the directional motion exhibited by various 

microorganisms. The researchers confirmed that the presence of self-propelled 

microorganisms in these nanofluids promotes fluid mixing and inhibits the clustering 

of nanoparticles, resulting in significant fluid motion at a broader scale in their 

investigation of nanofluids including bacteria. 

Meta-intransitive systems can improve the understanding and optimization of 

hydrodynamics in porous media under Darcy-Forchheimer bioconvection nanofluids. 

Researchers can better explain and anticipate complex processes by taking into 

account nontransitive features such as variable nanoparticle interactions and flow 

dynamics. This understanding is critical for applications in sectors such as 

environmental engineering and biotechnology, where precise control of fluid flow and 

particle movement is required. Metaintransitive systems also pose significant 

challenges and opportunities in decision theory, game theory, and more complex 

systems. Incorporating intransitive preferences into the decision-making process is 

critical to conducting effective multicriteria analysis. Meta-intransitive strategies in 

game theory can lead to complex interaction structures and consequences that 

influence strategic decision making. Meta-intransitive qualities also provide insights 

into new phenomena such as autonomy and patterning that shed light on the dynamics 

of coupled systems.  

The upper bound problem in the Darcy–Forchheimer theory of bioconvection 

nanofluids is a key problem with important implications. Its resolution can improve 

the theoretical framework and provide a deeper understanding of the behavior of 

nanofluids in various situations. Researchers can improve the performance and 

efficiency of nanofluid-based systems by setting the maximum achievable values of 

important parameters such as fluid velocity, temperature, nanoparticle concentration, 

and microbial behavior. Solving this problem is critical to advancing scientific 

knowledge and practical applications in fields such as environmental engineering, 

medicine, and nanomaterials.  
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Many real-life scenarios are intrinsically unique, and this article offers a novel 

perspective. The non-dimensionalization technique, which uses non-similarity 

transformations, is more physics-based and accountable. Our key goal is to properly 

handle non-similar phrases resulting from similarity modifications. To the author’s 

knowledge, no earlier academic works have explored bioconvective nanofluid flow 

across a stretched surface with temperature-dependent viscosity, as indicated by the 

literature survey. In our future initiatives, we intend to integrate this research with the 

subject of Mechatronics, concentrating on the creation and improvement of advanced 

systems. Our primary focus is on biomedical equipment and biomechanics. This 

multidisciplinary collaboration has enormous potential since it leverages the 

information created by our research to promote pioneering solutions that promise in 

healthcare and biotech. Our goal is to help translate theoretical discoveries into real-

world uses, making major contributions to technological advances.  

With a keen interest in the aforementioned discoveries and their increasing 

applicability across various industries, such as engineering, biochemical mechanisms, 

and biological sciences, our objective is to explore the non-similar analysis of MHD 

boundary layer flow involving Darcy-Forchheimer convection nanofluids. 

Specifically, we are concentrating on a flow consisting predominantly of two different 

nanoparticles, namely 𝑍𝑛𝑂  and 𝑇𝑖𝑂2, combined with blood as the base fluid. The 

addition of 𝑍𝑛𝑂 and 𝑇𝑖𝑂2 nanoparticles to blood-base fluid results in a complicated 

interaction between nanoparticles and the biological system. These nanoparticles, 

which have a wide range of uses, interact differently inside the circulation due to 

characteristics such as dimension, chemistry of the surface, and biological 

compatibility. Knowing these interactions is critical for investigating possible 

biological applications such as medication administration and medical imaging, while 

taking into account both the benefits and drawbacks of nanoparticle-blood interactions. 

To account for the influence of the magnetic field, heat generation, and porosity, we 

have employed the single-phase nanofluid model developed by Tiwari and Das [29]. 

The control system has been transformed into a non-similar configuration using 

suitable transformations. To solve the modified equations, we employed the local non-

similarity technique (LNS) developed by Sparrow and Yu [30] and the bvp4c package 

within the MATLAB computational software. As far as our understanding goes, no 

prior research has been conducted on this subject. A graphical analysis has been 

employed to comprehensively examine the effects of dimensionless growth factors on 

velocity, energy, concentration, and microorganism profiles. Additionally, we present 

a further numerical investigation of skin friction, the local Nusselt number, and 

microorganism flux using appropriate methods. 

2. Problem formulation 

Consider the flow of an incompressible MHD nanofluid in a steady two-

dimensional boundary layer containing nanoparticles of titanium dioxide (𝑇𝑖𝑂2) and 

zinc oxide (𝑍𝑛𝑂) disseminated in the base liquid (blood) over a linearly stretched 

surface with Darcy-Forchheimer bioconvection nanofluids. The Darcy Forchheimer 

model is employed to explain the porous media. The velocity of the stretched fluid, 

denoted as 𝑈𝑤 , is aligned with the stretched surface, while the ambient velocity 
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remains at zero and the ambient temperature is equivalent to 𝑇∞. 𝐹 =
𝐶𝑏

√𝑘
 denoted the 

porous material inertial coefficient, The variables 𝑇, 𝐶, and 𝑛  represent fluid 

temperature, nanoparticle concentration, and microbe distribution function, 

respectively. Additionally, the stretched surface is positioned perpendicular to the 

applied magnetic field 𝐵𝑜. Furthermore, the influence of both porosity and the heat 

source is considered. Figure 1 presented illustrates the flow configuration and flow 

chart of the current investigation. The equations that describe the conservation of mass, 

momentum, energy, concentration, and microorganism within the boundary layer are 

also included [10,25,31]. 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

𝜌𝑛𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝜇𝑛𝑓

𝜕2𝑢

𝜕𝑦2 − 𝜎𝑛𝑓𝐵𝑜
2𝑢 −

𝜇𝑛𝑓

𝐾
𝑢 − 𝐹𝑢2, (2) 

(𝜌𝑐𝑃)𝑛𝑓 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘𝑛𝑓

𝜕2𝑇

𝜕𝑦2 + 𝜎𝑛𝑓(𝑢𝐵𝑜)2 +
𝜇𝑛𝑓

𝐾
𝑢2 + 𝑄𝑜(𝑇 − 𝑇∞) + 𝐹𝑢3  (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑛𝑓

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑜(𝐶 − 𝐶∞) +
𝐷𝑚

𝑇𝑚
𝐾𝑇

𝜕2𝑇

𝜕𝑦2, (4) 

𝑢
𝜕𝑛

𝜕𝑥
+ 𝑣

𝜕𝑛

𝜕𝑦
= 𝐷𝑚

𝜕2𝑛

𝜕𝑦2 +
𝑏𝑊𝑐

(𝐶𝑤−𝐶∞)
(

𝜕

𝜕𝑦
(𝑛

𝜕𝐶

𝜕𝑦
)). (5) 

Associated boundaries [32] are: 

𝑢 = 𝑈𝑤 = 𝑎𝑥, 𝑣 = 𝑣𝑤 = 0, 𝑇 = 𝑇𝑤 , 𝐶 = 𝐶𝑤 ,  𝑛 = 𝑛𝑤 , 𝑎𝑡 𝑦 = 0, 

𝑢 → 0, 𝑛 → 𝑛∞, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ 𝑎𝑠 𝑦 → ∞. 
(6) 

Here, Equation (1) represents the continuity equation based on the law of 

conservation of mass; Equation (2) is the momentum equation based on Newton’s 

second law of motion; Equation (3) is the energy equation based on the first law of 

thermodynamics; Equation (4) is the concentration equation or advection-diffusion 

equation based on the law of conservation of mass for the scalar quantity; and Equation 

(5) is the microorganisms equation, which is based on the law of conservation of mass 

for microorganisms, random motility, and chemotaxis. The associated boundary 

conditions at the wall surface and far away from the wall are given in Equation (6). 

 

Figure 1. (a) Flow configuration and (b) Flow chart of the problem. 

Introducing 𝜉(𝑥) and 𝜂(𝑥, 𝑦) as new terms to create a non-similar flow. 
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𝜉 =
𝑥

𝑙
, 𝜂 = √

𝑐

𝜐𝑓
𝑦, 𝑢 = 𝑐𝑥

𝜕𝑓(𝜉,𝜂)

𝜕𝜂
, 𝑣 = −√𝜐𝑓𝑐 (

𝜕𝑓(𝜉,𝜂)

𝜕𝜉
𝜉 + 𝑓(𝜉, 𝜂)), 

𝜃(𝜉, 𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝜑(𝜉, 𝜂) =

𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞
, 𝜒(𝜉, 𝜂) =

n − 𝑛∞

𝑛𝑤 − 𝑛∞
 

(7) 

Utilizing Equation (7), Equation (1) is perfectly satisfied given the above 

transformations, while Equations (2)– (5) become: 

𝜇𝑛𝑓

𝜇𝑓

𝜕3𝑓

𝜕𝜂3
−

𝜎𝑛𝑓

𝜎𝑓
𝑀

𝜕𝑓

𝜕𝜂
−

𝜇𝑛𝑓

𝜇𝑓
𝜆

𝜕𝑓

𝜕𝜂
− (

𝜕𝑓

𝜕𝜂
)

2

(
𝜌𝑛𝑓

𝜌𝑓
+ 𝐹𝑟) +

𝜌𝑛𝑓

𝜌𝑓
𝑓

𝜕2𝑓

𝜕𝜂2

= 𝜉
𝜌𝑛𝑓

𝜌𝑓
(

𝜕𝑓

𝜕𝜂

𝜕2𝑓

𝜕𝜉𝜕𝜂
−

𝜕𝑓

𝜕𝜉

𝜕2𝑓

𝜕𝜂2
), 

(8) 

𝑘𝑛𝑓

𝑘𝑓

𝜕2𝜃

𝜕𝜂2
+ 𝑃𝑟𝐸𝑐𝜉2 (

𝜕𝑓

𝜕𝜂
)

2

(
𝜎𝑛𝑓

𝜎𝑓
𝑀 +

𝜇𝑛𝑓

𝜇𝑓
𝜆) + 𝑃𝑟 (𝑄𝜃 +

(𝜌𝐶𝑝)
𝑛𝑓

(𝜌𝐶𝑝)
𝑓

𝑓
𝜕𝜃

𝜕𝜂
)

+
(𝜌𝐶𝑝)

𝑓

(𝜌𝐶𝑝)
𝑛𝑓

𝐹𝑟𝐸𝑐𝜉3 (
𝜕𝑓

𝜕𝜂
)

3

= 𝑃𝑟𝜉
(𝜌𝐶𝑝)

𝑛𝑓

(𝜌𝐶𝑝)
𝑓

(
𝜕𝑓

𝜕𝜂

𝜕𝜃

𝜕𝜉
−

𝜕𝑓

𝜕𝜉

𝜕𝜃

𝜕𝜂
), 

(9) 

𝐷𝑛𝑓

𝐷𝑓

𝜕2𝜑

𝜕𝜂2
+ 𝑆𝑐 (𝑓

𝜕𝜑

𝜕𝜂
− 𝐾𝑟𝜑 + 𝑆𝑟

𝜕2𝜃

𝜕𝜂2
) = 𝜉𝑆𝑐 (

𝜕𝑓

𝜕𝜂

𝜕𝜑

𝜕𝜉
−

𝜕𝑓

𝜕𝜉

𝜕𝜑

𝜕𝜂
), (10) 

𝜕2𝜒

𝜕𝜂2
+ 𝑃𝑒 (

𝜕2𝜑

𝜕𝜂2
(𝜒 + 𝛿1) +

𝜕𝜒

𝜕𝜂

𝜕𝜑

𝜕𝜂
) + 𝑓𝐿𝑒

𝜕𝜒

𝜕𝜂
= 𝜉𝐿𝑒 (

𝜕𝑓

𝜕𝜂

𝜕𝜒

𝜕𝜉
−

𝜕𝑓

𝜕𝜉

𝜕𝜒

𝜕𝜂
). (11) 

The associated non-similar boundaries are as follows: 
𝜕𝑓

𝜕𝜂
(𝜉, 0) = 1, 𝑓(𝜉, 0) + 𝜉

𝜕𝑓

𝜕𝜉
(𝜉, 0) = 0, 𝜃(𝜉, 0) = 1, 𝜑(𝜉, 0) = 1, 𝜒(𝜉, 0) = 1, 

at 𝜂 = 0, 

𝜕𝑓

𝜕𝜂
(𝜉, ∞) → 0, 𝜒(𝜉, ∞) → 0, 𝜃(𝜉, ∞) → 0, 𝜑(𝜉, ∞) → 0, as  𝜂 → ∞. 

(12) 

In above equations 𝑀, 𝐹𝑟 , 𝜆, 𝑃𝑟, 𝐸𝑐, 𝑄, 𝑆𝑐 , 𝐾𝑟 , 𝑆𝑟 , 𝑃𝑒, 𝛿1 , 𝐿𝑒, 𝑓, 𝜃, 𝜑, and 𝜒  

represents the magnetic field parameter, Forchheimer number, Porosity parameter, 

Prandlt number, Eckert number, Heat source, Schmidt number, chemical response 

parameter, Soret number, Peclet number, microorganism difference parameter, Lewis 

number, dimensionless stream function, temperature, concentration, and gyrotactic 

microorganism respectively. 

Therefore, the following parameters are defined:  

𝑀 =
𝜎𝑓𝐵0

2

𝑐𝜌𝑓
 𝑄 =

𝑄0

𝑐(𝜌𝐶𝑃)𝑓

 𝑃𝑒 =
𝑏𝑊𝑐

𝐷𝑚
 

𝐹𝑟 =
2𝐹𝑙

𝜌𝑓
 𝑆𝑐 =

𝜈𝑓

𝐷𝑓
 𝛿1 =

𝑛∞

𝑛𝑤 − 𝑛∞
 

𝑃𝑟 =
𝜈𝑓(𝜌𝐶𝑝)

𝑓

𝑘𝑓
 𝐾𝑟 =

𝐾𝑜

𝑎
 𝐿𝑒 =

𝜈𝑓

𝐷𝑚
 

𝐸𝑐 =
𝑐2𝑙2

(𝑐𝑝)
𝑓

(𝑇𝑤 − 𝑇∞)
 𝑆𝑟 =

𝐷𝑚𝐾𝑇

𝜈𝑇𝑚

(𝑇𝑤 − 𝑇∞)

(𝐶𝑤 − 𝐶∞)
  

A list of relevant physical quantities can be found in some references [33,34]. 

𝐶𝑓 =
𝜏𝑤

𝜌𝑓𝑈2
𝑊

, 𝑁𝑢 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
, 𝜏𝑤 = (𝜇𝑛𝑓

𝜕𝑢

𝜕𝑦
)

𝑦=0

, (13) 
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𝑞𝑤 = (𝑘𝑛𝑓

𝜕𝑇

𝜕𝑦
)

𝑦=0

. 

here 𝐶𝑓 , 𝑁𝑢, 𝜏𝑤 , and 𝑞𝑤  represents drag coefficient, Nusselt number, surface shear 

stress, and surface flux. 

Dimensionless form of Equation (13) is: 

𝐶𝑓(𝑅𝑒𝑥)
1

2 = 𝜉−1 𝜕2𝑓

𝜕𝜂2
(𝜉, 0), 𝑁𝑢𝑥(𝑅𝑒𝑥)−

1

2 = −
𝑘𝑛𝑓

𝑘𝑓

𝜕𝜃

𝜕𝜂
(𝜉, 0) (14) 

3. Methodology for local non-similarity 

To investigate the flow of nanofluid over a stretched surface within the boundary 

layer, we employ the local non-similarity (LNS) method on the dimensionless 

governing model presented in Equation (8–11) along with the specified boundary 

conditions (12). In the subsequent section, a thorough, step-by-step elucidation of the 

LNS method applied to address the given problem will be provided. 

The main advantage of LNS is that it doesn’t require the resolution of other 

streamwise points to get non-similar solutions for any streamwise point. Furthermore, 

the differential equations from which these localized solutions are obtained are 

ordinary differential equations for computing convenience. Furthermore, this 

technique allows for a certain degree of precise self-validation. The preparatory 

process for applying the local non-similarity technique to a particular problem consists 

of an organized sequence of discrete phases. The actual coordinates 𝑥 and 𝑦 are first 

replaced with the carefully selected transformed coordinates  𝜉  and 𝜂 . The 𝜂 

coordinate, which includes 𝑦, is represented as a pseudo-similarity variable. Its main 

goal is to reduce the degree to which the answer depends on the streamwise variable 

𝑥 , in the same way that a genuine similarity variable completely eliminates 𝑥 -

dependency. On the other hand, the coordinate 𝜉 depends just on 𝑥, and it is frequently 

used in many problems as a dimensionless representation of 𝑥. Because the resultant 

equations effectively become ordinary differential equations, the computing 

complexity is decreased by eliminating terms involving 
𝜕

𝜕𝜉
(. ). This simplifying also 

removes the streamwise connection, allowing locally independent solutions to be 

achieved. While there are computational benefits to this “local similarity” technique, 

the correctness of the findings may not always be guaranteed. 

3.1. First level of truncation 

Considering the term 𝜉 are significantly smaller than one at the first truncation 

level, the right-hand sides of Equations (8–11) become zero. This results in the 

modified system of equations taking the following form. 
𝜇𝑛𝑓

𝜇𝑓

(𝑓′′′ − 𝜆𝑓′) −
𝜎𝑛𝑓

𝜎𝑓
𝑀𝑓′ +

𝜌𝑛𝑓

𝜌𝑓

(𝑓𝑓′′ − (𝑓′)2) − (𝑓′)2𝐹𝑟 = 0, (15) 

𝑘𝑛𝑓

𝑘𝑓
𝜃′′ + 𝑃𝑟𝐸𝑐𝜉2(𝑓′)2 (

𝜎𝑛𝑓

𝜎𝑓
𝑀 +

𝜇𝑛𝑓

𝜇𝑓
𝜆) + 𝑃𝑟 (𝑄𝜃 +

(𝜌𝐶𝑝)
𝑛𝑓

(𝜌𝐶𝑝)
𝑓

𝑓𝜃′)

+
(𝜌𝐶𝑝)

𝑓

(𝜌𝐶𝑝)
𝑛𝑓

𝐹𝑟𝐸𝑐𝜉3(𝑓′)3 = 0, 

(16) 
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𝐷𝑛𝑓

𝐷𝑓
𝜑′′ + 𝑆𝑐(𝑓𝜑′ − 𝐾𝑟𝜑 + 𝑆𝑟𝜃′′) = 0, (17) 

𝜒′′ + 𝑃𝑒(𝜑′′(𝜒 + 𝛿1) + 𝜒′𝜑′) + 𝑓𝐿𝑒𝜒′ = 0. (18) 

With boundary conditions, 

𝑓(𝜉, 0) = 0, 𝑓′(𝜉, 0) = 1, 𝜃(𝜉, 0) = 1, 𝜑(𝜉, 0) = 1, 𝜒(𝜉, 0) = 1, at 𝜂 = 0, 

𝑓′(𝜉, ∞) → 0, 𝜃(𝜉, ∞) → 0, 𝜑(𝜉, ∞) → 0, 𝜒(𝜉, ∞) → 0, as 𝜂 → ∞. 
(19) 

3.2. Second level of truncation 

To achieve a second-order truncation, it is essential to differentiate Equations (8) 

– (11) with respect to 𝜉 and introduce additional functions.  

In order to achieve the second degree of truncation, the following relations are 

incorporated: 

𝜕𝑓

𝜕𝜉
= 𝑘,

𝜕𝜃

𝜕𝜉
= 𝑙,

𝜕𝜑

𝜕𝜉
= 𝑚,

𝜕𝜒

𝜕𝜉
= 𝑛  and 

𝜕𝑘

𝜕𝜉
=

𝜕𝑙

𝜕𝜉
=

𝜕𝑚

𝜕𝜉
=

𝜕𝑛

𝜕𝜉
= 0 (20) 

Therefore, the modified system of equations at the second degree of iteration is: 

𝜇𝑛𝑓

𝜇𝑓
𝑘′′′ =

𝜌𝑛𝑓

𝜌𝑓

{3𝑓′𝑘′ − 2𝑘𝑓′ − 𝑓𝑘′′ + 𝜉((𝑘′)2 − 𝑘𝑘′′)} + 𝑘′ (
𝜎𝑛𝑓

𝜎𝑓
𝑀 +

𝜇𝑛𝑓

𝜇𝑓
𝜆) (21) 

𝑘𝑛𝑓

𝑘𝑓
𝑙′′ = −2𝑃𝑟𝐸𝑐𝜉𝑓′ (

𝜎𝑛𝑓

𝜎𝑓
𝑀 +

𝜇𝑛𝑓

𝜇𝑓
𝜆) (𝑓′ + 𝜉𝑘′)

− 𝑃𝑟
(𝜌𝐶𝑝)

𝑛𝑓

(𝜌𝐶𝑝)
𝑓

{𝑓𝑙′ + 𝑓′𝑙 + 𝜉(𝑘′𝑙 − 𝑘𝑙′)} + 𝑃𝑟𝑄𝑙′

−
(𝜌𝐶𝑝)

𝑓

(𝜌𝐶𝑝)
𝑛𝑓

3𝐹𝑟𝐸𝑐(𝜉2(𝑓′)3 + 𝜉3(𝑓′)2𝑘′), 

(22) 

𝐷𝑛𝑓

𝐷𝑓
𝑚′′ = 𝑆𝑐(𝑓′𝑚 − 𝑘𝜑′) + 𝜉𝑆𝑐(𝑘′𝑚 − 𝑘𝑚′)

− 𝑆𝑐(𝑘𝜑′ + 𝑓𝑚′ − 𝐾𝑟𝑚 + 𝑆𝑟𝑙′′), 

(23) 

𝑛′′ = 𝐿𝑒(𝜉(𝑘′𝑛 − 𝑘𝑛′) − 2𝑘𝜒′) − 𝑃𝑒(𝑚′′(𝜒 + 𝛿1) + 𝜙′′𝑛 + 𝑛′𝜙′ + 𝜒′𝑚′). (24) 

With associated boundaries, 

𝑘′(𝜉, 0) = 0, 𝑘(𝜉, 0) = 0, 𝑙(𝜉, 0) = 0, 𝑚(𝜉, 0) = 0, 𝑛(𝜉, 0) = 0, at 𝜂 = 0, (25) 

𝑘′(𝜉, ∞) → 0, 𝑙(𝜉, ∞) → 0, 𝑚(𝜉, ∞) → 0, 𝑛(𝜉, ∞) → 0, as 𝜂 → ∞. (26) 

4. Result and discussion 

This section presents a physical discussion using graphs that were generated to 

inspect the behavior of several dimensionless material variables in relation to velocity, 

temperature, concentration, and microorganism profiles. Each graph provides a 

comparison between the two nanofluids 𝑍𝑛𝑂 + blood and 𝑇𝑖𝑂2 + blood. 

Figure 2 depicts how (𝑀) alters the velocity profile. According to research, 

larger values of the (𝑀) correlate with lower velocity estimations. Magnetic fields 

affect fluid flow, causing the velocity profile to fall. The magnetic field creates a 

Lorentz force in the fluid, which opposes both the magnetic field and the direction of 

flow. This force stops the fluid from flowing, slows it down, and alters the flow pattern. 

Figure 3 depicts the impact of porosity on velocity profiles. By raising the porosity 

parameter, the porous media becomes more permeable, allowing fluid to flow more 
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easily over it. This raises the fluid’s total flow rate. The velocity profile, on the other 

hand, drops when the flow rate rises because the fluid’s internal velocity gradient 

increases. Figure 4 shows how changing the Forchheimer number affects the 

deviation of the velocity distribution. As the Forchheimer number increases, the effect 

of inertial forces on fluid flow becomes more apparent, resulting in a decrease in fluid 

velocity. This occurs because the fluid encounters greater resistance when passing 

through a porous medium due to the combined effects of viscous and inertial drag 

forces. The higher the Forchheimer number, the stronger the inertial effects, which 

leads to a decrease in flow acceleration. As a result, the fluid velocity profile is leveled 

out, demonstrating a more uniform velocity distribution across the flow cross-section. 

In addition, the boundary layer thickens, which is the region along the wall where the 

fluid velocity changes from zero (due to the no-slip condition at the wall) to the free-

stream velocity. The thickening of the boundary layer is caused by increased drag, 

which greatly slows down the fluid at the wall, expanding the region over which 

velocity gradients can be measured. 

 

Figure 2. Variation of velocity profile with different values of “𝑀”. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

 

Figure 3. Variation of velocity profile with different values of λ. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 
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Figure 4. Variation of velocity profile with different values of Fr. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

Figures 5–7 show that the temperature profile varies depending on the magnetic 

field parameter (𝑀), porosity parameter (𝜆) and Eckert number (𝐸𝑐). 

It was found that increasing the magnetic field parameter (𝑀)  enhances the 

magnetic field surrounding the linearly stretched sheet. This stronger magnetic field 

induces an electric current in the fluid, causing the Lorentz force to resist the fluid’s 

movement. The counteracting Lorentz force leads to an increase in the coefficient of 

surface friction and the rate of heat transfer on the surface of the sheet. As a result of 

the increase in thermal energy created by the work done against the Lorentz force, the 

temperature profile increases. Increasing the porosity parameter (𝜆) reduces the fluid 

flow inside the porous medium. This additional obstacle increases the velocity 

gradient near the linearly stretched layer, causing the fluid to take a more tortuous 

course. Due to higher frictional heating and viscous energy dissipation, an increase in 

the velocity gradient leads to an increase in the temperature gradient. As a result, when 

the porosity parameter increases, the temperature profile also increases. Likewise, an 

increase in the Eckert number (𝐸𝑐) indicates that the fluid contains more kinetic 

energy than thermal energy. This increase in kinetic energy causes greater viscous 

dissipation, which converts it into thermal energy. As a result, the velocity gradient 

near the linearly extending sheet increases, resulting in a larger temperature difference. 

The conversion of kinetic energy to heat increases the temperature profile, 

demonstrating a clear correlation between the Eckert number and temperature rise. 

Figures 8 and 9 show that the Schmidt number (𝑆𝑐) and Soret number (𝑆𝑟) vary 

throughout the concentration profile. As the Schmidt number (𝑆𝑐)  increases, the 

concentration profiles decrease. The Schmidt number is defined as kinematic viscosity 

(momentum diffusion coefficient)/mass diffusion coefficient. A larger Schmidt 

number indicates that mass diffusion is lower than momentum diffusion, meaning that 

mass (or species) diffuses more slowly than momentum. This reduced mass diffusion 

rate results in a faster decrease in nanofluid concentration, resulting in a lower 

concentration profile. From a physical perspective, this means that particles in a 

nanofluid are less likely to disperse and mix with the surrounding fluid, resulting in 

steeper concentration gradients and lower overall concentration levels. On the contrary, 

an increase in the Soret number (𝑆𝑟   )leads to an increase in the concentration profile. 

The Soret effect, or thermal diffusion, occurs when a temperature gradient causes mass 

transfer. A higher Soret number indicates that thermal diffusion is more significant 
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than mass diffusion. This means that temperature gradients play a large role in mass 

transport, causing species to migrate more efficiently from regions of higher 

temperature to regions of lower temperature. This thermal diffusion effect increases 

the nanofluid concentration, providing an additional mechanism for mass movement 

beyond simple mass diffusion. As a result, the concentration profile shifts, revealing 

greater species concentrations in locations exposed to the temperature gradient. 

Figures 10 and 11 depict the dispersion of microbial profiles for different Peclet 

numbers (𝑃𝑒)  and Lewis numbers. As the Peclet number (𝑃𝑒)  increases, the 

advection of microorganisms dominates over diffusion. The Peclet number is the ratio 

of the rates of advective and diffusive transport. A higher Peclet number indicates that 

the fluid flow is effectively transporting microorganisms down the stretched sheet. 

This improved advective transport means that microorganisms are carried further from 

their original position by the fluid flow, resulting in a higher profile of microorganisms 

in the downstream area. In physical terms, this means that microbes are influenced 

more by volumetric fluid movement than by random diffusion of molecules, resulting 

in greater concentrations of bacteria downstream. Conversely, increasing the Lewis 

number (𝐿𝑒) makes the thermal conductivity coefficient more important than the mass 

diffusivity coefficient. The Lewis number is calculated as the ratio of the thermal 

conductivity coefficient to the mass diffusion coefficient. A higher Lewis number 

indicates that heat travels through the nanofluid faster than microorganisms. As a 

result, the nanofluid thermally diffuses faster than microorganisms. Thermal diffusion, 

which is more efficient, affects the temperature distribution within the liquid but does 

not contribute to the mobility of microbes. As a result, the concentration of 

microorganisms drops, resulting in a lower microbial profile. This suggests that when 

Lewis numbers increase, the ability of microbes to spread by diffusion decreases due 

to the suppressive effect of heat diffusion. 

 

Figure 5. Variation of temperature profile with different values of “𝑀”. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 
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Figure 6. Variation of temperature profile with different values of “𝜆”. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

 

Figure 7. Variation of temperature profile with different values of “𝐸𝑐”. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

 

Figure 8. Variation of concentration profile with different values of “𝑆𝑐”. 



Thermal Science and Engineering 2024, 7(2), 6914. 
 

13 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

 

Figure 9. Variation of concentration profile with different values of “𝑆𝑟”. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

 

Figure 10. Variation of microorganism profile with different values of “𝑃𝑒”. 

If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

 

Figure 11. Variation of microorganism profile with different values of “𝐿𝑒”. 
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If 𝜉 = 0.5, 𝑄 = 1.1, 𝐸𝑐 = 1.8, 𝑃𝑟 = 21, 𝑀 = 0.25, 𝜆 = 1.5, 𝐹𝑟 = 1.3, 𝑆𝑐 =

2.8, 𝐾𝑟 = 0.2, 𝑆𝑟 = 0.1, 𝐿𝑒 = 0.7, 𝛿1 = 0.3. 

Table 1 depicts the thermophysical characteristics of the nanofluid. 

Table 1. The thermophysical characteristics of the nanofluid [25]. 

Property Symbol Defined 

Viscosity 𝜇𝑛𝑓 𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5
 

Density 𝜌𝑛𝑓 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠 

Heat Capacitance (𝜌𝐶𝑝)𝑛𝑓 (𝜌𝐶𝑝)𝑛𝑓 = (1 − 𝜙)(𝜌𝐶𝑝)
𝑓

+ 𝜙(𝜌𝐶𝑝)𝑠 

Electric conductivity 𝜎𝑛𝑓 𝜎𝑛𝑓 = {1 +

3 (
𝜎𝑠

𝜎𝑓
− 1) 𝜙

(
𝜎𝑠

𝜎𝑓
+ 2) − (

𝜎𝑠

𝜎𝑓
− 1) 𝜙

} 𝜎𝑓 

Thermal Conductivity 𝑘𝑛𝑓 𝑘𝑛𝑓 =
(𝑘𝑠 + 2𝑘𝑓) − 2𝜙(𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜙(𝑘𝑓 − 𝑘𝑠)
𝑘𝑓 

Mass Diffusivity 𝐷𝑛𝑓 𝐷𝑛𝑓 = (1 − 𝜙)𝐷𝑓 

Table 2 presents the thermophysical properties of both base fluids and 

nanoparticles. 

Table 2. The thermophysical characteristics of nanoparticles in conjunction with the 

base fluid. 

Physical property Blood 𝒁𝒏𝑶 𝑻𝒊𝑶𝟐 

𝜌(𝑚−3𝐾𝑔) 1063 5700 4250 

𝐶𝑝(𝐾−1𝐽𝐾𝑔−1) 3594 523 686.2 

𝑘(𝐾−1𝑊𝑚−1) 0.492 25 8.9538 

𝜎(Ω. 𝑚−1) 0.8 2 × 10-6 1.0 × 10-12 

Tables 3 and 4 present a discussion on the Nusselt number and drag force 

coefficient responses for different parameter values. 

Table 3 shows the direct relation of different parameters with 𝑅𝑒
1

2𝐶𝑓 , as the 

parameters 𝑀, 𝜆, and 𝐹𝑟  increase, the value of 𝑅𝑒
1

2𝐶𝑓  also increase. 

Table 3. Calculated the −𝑅𝑒
1

2𝐶𝑓  values for different 𝑀, 𝜆, and 𝐹𝑟  predictions, assuming ξ=0.5, and 𝑃𝑟 = 21. 

𝑴 𝝀 𝑭𝒓 𝒁𝒏𝑶 + Blood 𝑻𝒊𝑶𝟐 + Blood 

0.2 0.5 0.6 0.43782910 0.40347623 

0.4 0.5 0.6 0.43871489 0.40448743 

0.6 0.5 0.6 0.43946105 0.40452139 

0.8 0.5 0.6 0.44163052 0.40453278 

0.25 1 0.6 0.01638520 0.06201482 

0.25 3 0.6 0.02561956 0.06321946 

0.25 5 0.6 0.02581405 0.06422105 
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Table 3. (Continued). 

𝑴 𝝀 𝑭𝒓 𝒁𝒏𝑶 + Blood 𝑻𝒊𝑶𝟐 + Blood 

0.25 7 0.6 0.02816391 0.07249543 

0.25 0.5 0.5 0.13734056 0.27510531 

0.25 0.5 1.0 0.14246190 0.27621021 

0.25 0.5 1.5 0.14349561 0.29218945 

0.25 0.5 2.0 0.15302185 0.29317220 

Table 4 shows the inverse relation of different parameters with 𝑅𝑒
1

2𝑁𝑢, as the 

parameters 𝑀, 𝜆, 𝐸𝑐, and 𝑄 increase, the value of 𝑅𝑒
1

2𝑁𝑢 decrease. 

Table 4. Calculated the −𝑅𝑒
1

2𝑁𝑢 values for 𝑀, 𝜆, 𝐸𝑐, and 𝑄 predictions, assuming ξ=0.5, and 𝑃𝑟 = 21. 

𝑴 𝝀 𝑬𝒄 𝑸 𝒁𝒏𝑶 + Blood 𝑻𝒊𝑶𝟐 + Blood 

0.2 0.5 0.2 0.4 0.71026721 0.62393745 

0.4 0.5 0.2 0.4 0.70827642 0.62137012 

0.6 0.5 0.2 0.4 0.70472011 0.61274624 

0.8 0.5 0.2 0.4 0.69321064 0.59387251 

0.25 1 0.2 0.4 0.39174290 0.33865102 

0.25 3 0.2 0.4 0.37812301 0.33682306 

0.25 5 0.2 0.4 0.37520173 0.31852047 

0.25 7 0.2 0.4 0.34193084 0.31638561 

0.25 0.5 0.4 0.4 0.51030618 0.48261823 

0.25 0.5 0.8 0.4 0.50593821 0.47726582 

0.25 0.5 1.2 0.4 0.50262145 0.45451894 

0.25 0.5 1.6 0.4 0.48923073 0.44327632 

0.25 0.5 0.2 0.3 0.03914723 0.29526081 

0.25 0.5 0.2 0.5 0.01736814 0.29418652 

0.25 0.5 0.2 0.7 0.01519354 0.27862091 

0.25 0.5 0.2 0.9 0.01284067 0.27127912 

Table 5 illustrates a comparison between our study and the works done by El. 

Aziz [35], Loganathan and Vimla [36], and Sharma [37]. 

Table 5. Comparison of −𝜃′(0) across various values of 𝑃𝑟, in a scenario where 

𝑄, 𝐸𝑐, 𝑀 and 𝜆 are all equal to zero, and ξ is set to 0.5. 

𝑷𝒓 El. Aziz [35] Loganathan and Vimla [36] Sharma [37] Present Study 

1 0.954785 0.955870 0.954788 0.955271 

3 1.869074 1.868878 1.869073 1.868219 

5 2.500132 2.499982 2.500121 2.522403 

10 3.660372 3.660239 3.660289 3.661172 
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5. Conclusion 

In the problem being examined, a non-similar analysis of MHD boundary layer 

flow with Darcy-Forchheimer bioconvection of nanofluids is proposed in the study. 

The study has provided insights into the impact of the nanoparticles 𝑇𝑖𝑂2 and 𝑍𝑛𝑂 on 

the flow dynamics and transport phenomena within the boundary layer. Further 

investigations may be warranted to explore the long-term effects and potential 

applications of utilizing 𝑇𝑖𝑂2  and 𝑍𝑛𝑂  in nanofluid systems, particularly in the 

context of medical treatments and therapies. Understanding the behavior of these 

particles within MHD boundary layer flows is crucial for optimizing their utilization 

and ensuring their safe and effective implementation in various fields. The study 

investigates the impact of relevant parameters on velocity, temperature, nanoparticles 

volume fraction, and microorganism distribution within appropriate ranges. To tackle 

the highly nonlinear governing system, a combination of the LNS technique and the 

MATLAB bvp4c (built-in package) is employed successfully. This study’s findings 

can be summed up as follows: 

• The velocity profile collapses with the higher magnetic field (𝑀), porosity (𝜆), 

and Forchheimer number (𝐹𝑟) parameters. 

• By enhancing the magnetic field, porosity, and Eckert number parameters, the 

temperature profile improved. 

• The concentration profile is reduced when the Schmidt number (𝑆𝑐) is increased 

but improved when the Soret number (𝑆𝑟) is increased. 

• The microorganism’s profile reduced as the Lewis number (𝐿𝑒) grew, whereas it 

increased as the Peclet number (𝑃𝑒) increased. 

• Increases in the magnetic field, porosity, and Forchheimer number lead to an rise 

in the drag coefficient. 

• The local Nusselt number decreases as the magnetic field, porosity, Eckert 

number, and heat source increase. 

• A comparative study has been conducted to bolster the current research, 

showcasing the coherence of the current findings. 

• Future endeavors may focus on the refinement of medical imaging modalities 

such as magnetic resonance imaging (MRI), the optimization of radiation therapy 

methodologies for cancer treatment, and the incorporation of perspectives from 

heat transfer studies on stretched surfaces into biomedical device development, 

to improve both safety and effectiveness in medical era. 
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