Table of Contents
The cultivation of vegetables serves as a vital pillar in horticulture, offering an alternative avenue towards achieving economic sustainability. Unfortunately, farmers often lack adequate knowledge on optimizing resource utilization, which subsequently results in low productivity. Furthermore, there has been insufficient research conducted on the comparative profitability and efficient use of resources for pea cultivation. So, the present study was conducted to examine the profitability and resource use efficiency of conventional and organic pea production in Northwestern Himalayan state. Using the technique of purposive sampling, the districts and villages were selected based on the highest area. By using simple random sampling, a sample of 100 farmers was selected, out of which 50 were organic growers and 50 were inorganic growers, who were further categorized as marginal and small. The cost incurred was higher for the cultivation of inorganic vegetable crops, whereas returns and output-input ratio was higher in organic cultivation. The cultivation of peas revealed that the majority of inputs were being underutilized, and there was a need for proper reallocation of the resources, which would result in enhanced production. Further, major problems in the cultivation of vegetable crops were a high wage rate, a lack of organic certification, a shortage of skilled labour and a lack of technical knowledge.
Twenty-two tomato (Solanum lycopersicum L.) genotypes were examined for correlation and path analysis in the randomized block design under open field conditions. Total fruit yield showed a significant positive correlation with the number of fruits per plant, average fruit weight, lycopene content, and percent seedling survival in the field at both the genotypic and phenotypic levels. A strong correlation between these characters revealed that selection based on these characters would consequently improve the total fruit yield. Path analysis showed that the number of fruits per plant, average fruit weight, percent seedling survival in the nursery, and number of locules per fruit exhibited high positive direct phenotypic effects on total fruit yield, whereas the number of fruits per plant, average fruit weight, percent seedling survival in the field, and pollen viability had very high positive direct genotypic effects. Therefore, to increase the yield, it would be profitable to prioritize these traits in the selection program.
Tomato powdery mildew, fruit rot, and twig blight are all managed with Deltamethrin. Its residues could still be present in the crops, posing a health risk. The pesticide residue analysis, dissipation rate, and safety assessments were thus examined in green tomatoes. The analytical method for residue analysis was validated according to international standards. Tomato fruits and soil were used to study the dissipation of Deltamethrin 100 EC (11% w/w) at 12.5 g a.i ha−1 for the recommended dose (RD) and 25.0 g a.i ha−1 for the double of the recommended dose (DD). Ethyl acetate was used to extract residues from tomato fruit, and PSA and magnesium sulphate were used for cleanup.The fruits had recoveries ranging from 83% to 93% and the soil sample from 81.67% to 89.6%, with the limit of detection (LOQ) estimated at 0.01 mg kg−1. The matrix effect (ME) was calculated to be less than 20% for the tomato fruits and the soil.Half-lives for RD and DD were 1.95 and 1.84 days, respectively. All sampling days for both doses had dietary exposures of residues below the maximum permissible intake (MPI) of 0.16 mg person−1 day−1. The most effective method of decontaminating tomato residue containing Deltamethrin is blanching.
A total of 25 SSR primers were screened on 37 putative F1s derived from the five different crosses. Identified cross specific highly informative SSRs primers, i.e., 14 for the first cross, 10 for the second, 12 for the third and 6 each for fourth and fifth crosses. For the first cross Bhagwa × Daru 17, four primers (HvSSRT_375, NRCP_SSR9, NRCP_SSR12 and NRCP_SSR92) were found to be highly informative with higher 100% hybrid purity index (HPI), PIC (~0.52), and observed heterozygosity (Ho, range 0.87–0.93) values, and two F1s namely H1 and H2 were found to be highly heterotic with a heterozygosity index (HI) of 92.85%. Similarly, for Bhagwa × Nana, three primers (HvSSRT_375, HvSSRT_605 and NRCP_SSR19) had higher HPI (70%–100%), PIC (0.52–0.69), and Ho (0.75–0.33) values, and three F1s H1, H2, and H4 had 70% (HI). For Bhagwa × IC318712, four SSRs (HvSSRT_254, HvSSRT_348, HvSSRT_826 and NRCP_SSR95) had higher Ho (~0.83), HPI (100%) and PIC (~0.52) values, and four F1s H2, H7, H9, and H10 showed 91.66% (HI). For Bhagwa × Nayana, HvSSRT_605, HvSSRT_826, and HvSSRT_432, and for Ganesh × Nayana, HVSSRT_375, HVSSRT_605, and HvSSRT_826 were found informative. These markers will be highly useful in developing maps of populations.
Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages.
The growing of plants hydroponically is a soilless form of growing in modern day agriculture. It helps to make feed available for animals throughout the season since it is not affected by what is faced by field grown crops. The use of animal waste, that is, their faeces, in the growth of forage was compared with commercial hydroponics solutions as a way of looking for a reduction in the cost incurred in the purchase of commercial hydroponics solutions. The study evaluated the use of organic nutrient solutions (ONS) alongside a standard/commercial nutrient solution in growing crops hydroponically on the growth, dry matter yield, water use efficiency, and chemical composition of hydroponic maize fodder. The ONS used were formulated from the dried faeces of cattle, poultry, rabbits, and swine. The prepared organic nutrient solutions with the control were used in growing the maize seeds for 10 days, and growth, yield, and chemical composition were determined. Results show the highest (196 g) dry matter yield for maize hydroponic fodder irrigated with poultry ONS. Similarly, maize irrigated with poultry ONS was significantly (P < 0.05) higher in CP content, while it was not significantly different from maize irrigated with cattle, swine, and commercial solutions. A lower water use efficiency value (0.19 kg DM/m3) was recorded for maize irrigated with cattle ONS. According to the study, irrigating maize with different organic nutrient solutions produced maize fodder with a higher yield and a similar chemical composition as the commercial nutrient solution.
For centuries, stem cuttings harvested from sexually mature trees have been recognized to be more difficult to root than those from juvenile shoots. This has been poorly understood and attributed to a combination of ontogenetic and physiological ageing. The recent suggestion that micro-RNA may play a key role in phase change has stimulated a re-examination of some old data that identified pre-severance light x nutrient interactions affecting the rooting ability of stem cuttings. This was linked to vigorous growth and active photosynthesis without constraint from accumulated starch. Support for the prime importance of physiological factors was also obtained when seeking to induce physiological youth in the crowns of ontogenetically mature trees by the induction of roots within the tree crown. Meanwhile, at the other end of the phase change spectrum, floral initiation occurred when the opposite set of environmental conditions prevailed so that growth was stunted, and carbohydrates accumulated in leaves and stems. A re-examination of this literature suggests that rooting ability is driven at the level of an individual leaf and internode emerging from the terminal bud affecting both morphological and physiological activity. In contrast, flowering occurs when internode elongation and assimilate mobilization were hindered. It is therefore suggested that the concepts of juvenility and ageing are not relevant to vegetative propagation and should instead be replaced by physiological and morphological ‘fitness’ to root.
The semi-arid is a climate characterized by precipitation that is. insufficient to maintain crops and where evaporation often exceeds rainfall. Vegetation is one of the most sensitive indicators of environmental changes understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilization of biodiversity. In this study. our focus was on examining the vegetation diversity in the semi-arid region of Tebessa. which falls within the Eastern Saharan Atlas domain in North Africa’s semi-arid zone. Plants were sampled at 15 sites distributed across the study area. The quadrat method was used to conduct floral surveys. The sampling area of each sample was 100 square meters 10 m × 10 m (quadrat). Each quadrat was measured for species richness (number of species). abundance (number of individuals). and Richness generic (plant cover). Based on the floristic research. 48 species were found. classified into 21 families. with Asteraceae accounting for 34.69% of the species and Poaceae accounting for 14.28%.
Low temperature is one of the most significant environmental factors that threaten the survival of subtropical and tropical plant species. By conducting a study, which was arranged in a completely randomized design with three replicates, the relative freezing tolerance (FT) of four Iranian pomegranate cultivars, including ‘Alak Torsh’, ‘Tabestaneh Torsh’, ‘Poost Sefid’, and ‘Poost Syah’, as well as its correlation with some biochemical indices, were investigated. From each cultivar, pieces of one-year-old shoot samples were treated with controlled freezing temperatures (−11, −14, and −17 ℃) to determine lethal temperatures (LT50) based on survival percentage, electrolyte leakage, phenolic leakage, and tetrazolium staining test (TST) methods. Results showed that FT was higher in the second year with a lower minimum temperature and a higher concentration of cryoprotectants. The stronger correlation of electrolyte leakage with survival percentage (r = 0.93***) compared to the other three indices explained that this index could be the most reliable injury index in determining the pomegranate FT to investigate freezing effects. Of all four cultivars, ‘Poost Syah’ was the hardest by presenting a higher FT than ~ −14 ℃ in mid-winter. Accordingly, this pomegranate cultivar seems to be promising to grow in regions with a higher risk of freezing and to be involved in breeding programs to develop novel commercial cultivars.
Yam (Dioscorea sp.) is a popular tuber in Cameroon, where it is grown for both food and income. One of the most challenging aspects of the long-term storage of yam tubers is post-harvest spoilage, often caused by fungi. The use of post-harvest chemicals on yam tubers is not a matter of course. The present study evaluated the efficacy of aqueous extract and powder of Zingiber officinale against fungi associated with the storage rot of yam. The fungi were isolated from two yam cultivars, “Calabar” and “Ghana”, from three localities in Cameroon. The antifungal activity of the aqueous extract and ginger powder was studied in vivo on slices of yam tubers. The results obtained showed that eight fungi were associated with yam tubers and exhibited typical rotting symptoms. The most prevalent and virulent fungus was Penicillium sp., which caused decay volumes of 12.76 cm3 and 8.74 cm3 for “Calabar” and “Ghana” cultivars, respectively. Fungal spoilage was greatly reduced by the application of aqueous extract and ginger powder. The aqueous extract tested at the 30% dose was more effective with up to 80% inhibition. However, the ginger powder was more effective against Penicillium sp., Aspergillus niger, and Colletotrichum sp. associated with rot in the variety “Ghana” with total inhibition (100%). Therefore, the aqueous extracts and powder of Zingiber officinale can be used as a bio fungicide to improve the shelf life of yam tubers.
Among major global threats to papaya cultivation, papaya ringspot virus (PRSV) is the most challenging one. In the absence of any PRSV resistant commercial papaya cultivar, PRSV management is restricted to minimizing yield losses. ICAR-Indian Agricultural Research Institute, Regional Station, Pune has developed PRSV tolerant dioecious papaya lines, Pune Selection (PS)-1, PS-2, PS-3 and PS-5. Being dioecious these lines have limited acceptability among farmers. Gynodioecious population from these lines were developed and characterized. They are numbered PS-1-1, PS-2-1, PS-3-1 and PS-5-1. These lines were characterized against prevailing commercial gynodioecious cultivar, Red Lady, for five generations. The average plant height of PS-2-1 and PS-5-1 (183 cm) was more than Red Lady (158 cm), however, stem girth of all lines was lesser than Red Lady. The fruiting height of all lines was less than Red Lady (87 cm). Length of the fruiting column of all lines was more than Red Lady (37 cm), except in PS-1-1. Fruit yield of all lines was more than Red Lady (16 kg/plant). Intensity of PRSV infection in Red Lady (48%) was considerably more than all lines. These lines can be used for developing PRSV tolerant gynodioecious papaya variety.
Bangladesh’s coastal regions are rich in saline water resources. The majority of these resources are still not being used to their full potential. In the southern Bangladeshi region of Patuakhali, research was conducted to investigate the effects of mulching and drip irrigation on tomato yield, quality, and blossom-end rot (BER) at different soil salinity thresholds. There were four distinct treatments applied: T1= drip irrigation with polythene mulch, T2 = drip irrigation with straw mulch, T3 = drip irrigation without mulch, and T4 = standard procedure. While soil salinity was much greater in treatment T3 (1.19–8.42 dS/m) fallowed by T4 (1.23–8.63 dS/m), T1 treatments had the lowest level of salinity and the highest moisture retention during every development stage of the crops, ranging from 1.28–4.29 dS/m. Treatment T3 exhibited the highest soil salinity levels (ranging from 1.19 to 8.42 dS/m), followed by T4 with a range of 1.23 to 8.63 dS/m. In contrast, T1 treatments consistently maintained the lowest salinity levels (ranging from 1.28 to 4.29 dS/m) and the highest moisture retention throughout all stages of crop development. In terms of yield, drip irrigation with no mulch treatment (T3) provided the lowest output (13.37 t/ha), whereas polyethylene mulching treatment (T1) produced the maximum yield (46.04 t/ha). According to the study, conserving moisture in tomato fields and reducing soil salinity may both be achieved with drip irrigation combined with polythene mulch. The research suggests that employing drip irrigation in conjunction with polythene mulch could effectively preserve moisture in tomato fields and concurrently decrease soil salinity.
Organomineral fertilizer is used to improve and ameliorate the supply of nutrients in soils. Right and adequate application of fertilizers are determinants of its nutrient supply efficiency, which in turn enhances the vegetative growth and yield of cucumber. Field experiments were conducted at the Research Farm of the Federal University of Agriculture, Abeokuta, Nigeria, to assess the effects of variety and rate of organomineral fertilizer on cucumber growth and yield. Trials were conducted from June to August 2019 and repeated from September to November 2019. The cultivars were Poinsett, Greengo, and Monalisa. The rates of organomineral fertilizer were 0, 2.5, or 5.0 tons. ha−1. The treatments were replicated three times. Cucumber vegetative characters, yield, and yield components were studied. ‘Greengo’ produced the most leaves, followed by ‘Monalisa’; ‘Poinsett’ produced the least. Application of 5.0 tons. ha−1 organomineral fertilizer produced the longest vines and fruits. ‘Greengo’ had the earliest days to 50% flowering, followed by ‘Monalisa’; ‘Poinsett’ had the most days to 50% flowering. Plants treated with an application of 5.0 tons. ha−1 organomineral fertilizer attained 50% flowering in 29 days, but in 30 days with an application of 2.5 tons. ha−1 organomineral fertilizer; the control treatment attained 50% flowering in 33 days. Application of 5.0 tons. ha−1 organomineral fertilizer produced the longest fruits, thicker fruit diameter, and highest fruit yield compared with 2.5 and 0 tons. ha−1 of organomineral fertilizer treatments. The Greengo variety with application of 5.0 tons. ha−1 of organomineral fertilizer is recommended for optimum growth and yield in south western Nigeria.
Silymarin, a bioactive compound derived primarily from the seeds and fruit of the milk thistle (Silybum marianum) plant, has garnered increasing attention in recent years due to its potential applications in agriculture. This comprehensive review explores the multifaceted role of silymarin in agricultural practices, shedding light on its chemistry, biological activities, and diverse applications. The chemical structure and properties of silymarin are elucidated, emphasizing its unique solubility, stability, and bioavailability, which render it suitable for agricultural use. A significant portion of the review is dedicated to examining the biological activities of silymarin, which encompasses its antioxidant properties. The underlying mechanisms responsible for these activities are explored, highlighting their potential as a natural solution for mitigating environmental stressors that adversely affect crop health and productivity. Illustrative examples from research studies and practical applications underscore its effectiveness in safeguarding agricultural yields and ensuring food security. Furthermore, the review delves into the potential of silymarin to enhance crop growth, yield, and quality. Mechanisms through which silymarin influences plant physiology and metabolism are examined, providing valuable insights into its role as a growth-promoting agent in agriculture. The review concludes with a forward-looking examination of the prospects of silymarin in agriculture, highlighting emerging trends and areas of innovation that hold promise for sustainable and resilient farming systems. In summary, this review consolidates the current body of knowledge surrounding silymarin’s potential in agriculture. It underscores the versatility of silymarin as a natural tool for crop protection, growth enhancement, and environmental sustainability, offering valuable insights for researchers, practitioners, and policymakers seeking innovative approaches to address the challenges of modern agriculture.