Study of plant biodiversity and spatial distribution of spontaneous vegetation in semi-arid region (Tebessa Province. Northeast Algeria)
Vol 7, Issue 1, 2024
VIEWS - 226 (Abstract) 142 (PDF)
Abstract
The semi-arid is a climate characterized by precipitation that is. insufficient to maintain crops and where evaporation often exceeds rainfall. Vegetation is one of the most sensitive indicators of environmental changes understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilization of biodiversity. In this study. our focus was on examining the vegetation diversity in the semi-arid region of Tebessa. which falls within the Eastern Saharan Atlas domain in North Africa’s semi-arid zone. Plants were sampled at 15 sites distributed across the study area. The quadrat method was used to conduct floral surveys. The sampling area of each sample was 100 square meters 10 m × 10 m (quadrat). Each quadrat was measured for species richness (number of species). abundance (number of individuals). and Richness generic (plant cover). Based on the floristic research. 48 species were found. classified into 21 families. with Asteraceae accounting for 34.69% of the species and Poaceae accounting for 14.28%.
Keywords
Full Text:
PDFReferences
1. Schulze ED. Beck E. Buchmann N. et al. Interactions between plants. plant communities and the abiotic and biotic environment: with contributions from CF Dormann and HM Schaefer. Plant ecology. 2019; 689-741. doi: 10.1007/978-3-662-56233-8_19
2. Jalilian N. Mirdavoudi H. Paykani MN. Rahimi H. Response of Vicia variabilis to Some Ecological Factors in the Zagros Forests of Iran. Rangeland Ecology & Management. 2022; 80: 39-47. doi: 10.1016/j.rama.2021.09.007
3. Abdelmalek A. Hamli S. Benahmed A. et al. Physiological Response and Antioxidant Enzyme Activity of New Durum Wheat Varieties under Heat Stress. Biology Bulletin. 2023; 50: 919–930. doi: 10.1134/S1062359023600812
4. Chebout A. Souahi H. Kadi Z. Gacem R. Morphological and Physiological Responses of a Halophyte (Atriplex halimus) to the Effect of Heavy Metal Case of Cadmium. Journal of Bioresource Management. 2023; 10(1).
5. Souahi H. Impact of lead on the amount of chlorophyll and carotenoids in the leaves of Triticum durum and T. aestivum. Hordeum vulgare and Avena sativa. Biosystems Diversity. 2021; 29(3): 207-210. doi: 10.15421/012125
6. Souahi H. Chebout A. Fares R. Sédairia L. Remediation of Agricultural Soil by the Use of Halophytic Crops Under Heavy Metals Conditions in Semi-Arid Environments. Gesunde Pflanzen. 2023; 75: 1181–1192. doi: 10.1007/s10343-022-00779-z
7. Souahi H. Chebout A. Akrout K. et al. Physiological responses to lead exposure in wheat. barley and oat. Environmental challenge. 2021; 4: 100079. doi: 10.1016/j.envc.2021.100079
8. Souahi H. Gharbi A. Gassarellil Z. Growth and physiological responses of cereals species under lead stress. International Journal of Biosciences. 2017; 11(1): 266-273. doi: 10.12692/ijb/11.1.266-273
9. Souahi H. Chebout A. Assal N. Effects of heavy metals on the germination and radicle growth of halophytes species (Atriplex halimus L.). Studia Universitatis “Vasile Goldiș” Seria Științele Vieții (Life Science Series). 2021; 31(4): 178-186.
10. Souahi H. Abdelmalek A. Akrout K. et al. Effect of contaminated water on seed germination traits of crops. Trends in Horticulture.
11. Cao M. Narayanan M. Shi X. et al. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environmental Research. 2023; 217: 114924. doi: 10.1016/j.envres.2022.114924
12. Wangchuk K. Darabant A. Nirola H. et al. Climate Warming Decreases Plant Diversity but Increases Community Biomass in High-Altitude Grasslands. Rangeland Ecology & Management. 2021; 75: 51-57. doi: 10.1016/j.rama.2020.11.008
13. Hu A. Zhang J. Chen X. et al. Winter grazing and rainfall synergistically affect soil seed bank in semiarid area. Rangeland Ecology & Management. 2019; 72(1): 160-167. doi: 10.1016/j.rama.2018.07.012
14. Tripathi P. Behera M D. Roy PS. Plant invasion correlation with climate anomaly: an Indian retrospect. Biodiversity and Conservation. 2019; 28(8): 2049-2062. doi: 10.1007/s10531-019-01711-0
15. Reed DE. Ewers BE. Pendall E. et al. Biophysical factors and canopy coupling control ecosystem water and carbon fluxes of semiarid sagebrush ecosystems. Rangeland ecology & management. 2018; 71(3): 309-317. doi: 10.1016/j.rama.2018.01.003
16. Zimmer SN. Grosklos GJ. Belmont P. Adler PB. Agreement and uncertainty among climate change impact models: A synthesis of sagebrush steppe vegetation projections. Rangeland Ecology & Management. 2021; 75: 119-129. doi: 10.1016/j.rama.2020.12.006
17. Safriel U. Adeel Z. Niemeijer D. et al. Dryland systems. In: Ecosystems and Human Well-being: Current State and Trends: Findings of the Condition and Trends Working Group. Island Press. 2005; 623-662.
18. Moreira F. Ascoli D. Safford H. et al. Wildfire management in Mediterranean-type regions: paradigm change needed. Environmental Research Letters. 2020; 15(1): 011001. doi: 10.1088/1748-9326/ab541e
19. Priyan K. Issues and challenges of groundwater and surface water management in semi-arid regions. Groundwater Resources Development and Planning in the Semi-Arid Region 2021; 1-17. doi: 10.1007/978-3-030-68124-1_1
20. Köppen W. Volken E. Brönnimann S. The thermal zones of the earth according to the duration of hot. moderate and cold periods and to the impact of heat on the organic world (German). Meteorologische Zeitschrift. 2011; 20(3): 351-360. doi: 10.1127/0941-2948/2011/105
21. Maccherini S. Bacaro G. Tordoni E. et al. Enough is enough? Searching for the optimal sample size to monitor European habitats: a case study from coastal sand dunes. Diversity. 2020; 12(4): 138. doi: 10.3390/d12040138
22. Gounot P. Les vacances des Français en 1961. Economie et Statistique. 1962; 17(5): 413-434.
23. Quezel P. Santa S. New flora of Algeria and the southern desert regions. CNRS Paris; 1962. p. 1170.
24. Mafakheri M. Kordrostami M. Al-Khayri JM. Plant abiotic stress tolerance mechanisms. Nanobiotechnology: Mitigation of Abiotic Stress in Plants. 2021; 29-59. doi: 10.1007/978-3-030-73606-4_2
25. Vennetier M. Ripert C. Impact of climate change on Mediterranean flora: theory and practice (French). 2010.
26. Raddatz RL. Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the Canadian Prairies. Agricultural and Forest Meteorology. 2007; 142(2-4): 186-202.
27. Macheroum A. Kadik L. Neffar S. Chenchouni H. Environmental drivers of taxonomic and phylogenetic diversity patterns of plant communities in semi-arid steppe rangelands of North Africa. Ecological Indicators. 2021; 132: 108279. doi: 10.1016/j.ecolind.2021.108279
28. Gacem R. Souahi H. Fehdi C. Chebout A. Environmental monitoring of heavy metals status in semiarid lands of northeastern Algeria. Journal of Bioresource Management. 2023; 10(2): 3.
29. Senoussi A. Schadt I. Hioun S. et al. Botanical composition and aroma compounds of semiarid pastures in Algeria. Grass and Forage Science. 2021; 76(2): 282-299. doi: 10.1111/gfs.12510
30. Souahi H. Gacem R. Chenchouni H. Variation in Plant Diversity along a Watershed in the Semi-Arid Lands of North Africa. Diversity. 2022; 14(6): 450. doi: 10.3390/d14060450
31. Belala F. Hirche A. Muller SD. et al. Rainfall patterns of Algerian steppes and the impacts on natural vegetation in the 20th century. Journal of Arid Land. 2018; 10(4): 561-573.
DOI: https://doi.org/10.24294/th.v7i1.3952
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.