Table of Contents
The fresh dried pollen of grape and seedless grape varieties were used as the research material. Each cultivar was stored at room temperature, 5 C, 0 C, -18 C and -40 C respectively. Sucrose 200g / L + boric acid 50mg / L + agar 8g / L as the nutrient substrate, and the comparative study on the germination and culture of the nuclear breed and the seedless cultivar. The results showed that the pollen viability decreased with the increase of storage time at different temperatures. The pollen viability decreased at -18 C and -40 , and the pollen viability decreased at the same temperature The There was a significant difference in pollen viability between different cultivars at the beginning of storage, and the pollen viability of the kernel breed was higher than that of the seedless grape.
With the continuous development of facilities and horticulture, the area of vegetable planting in facilities increased year by year. Watermelon (Citrullus vulgaris Schrad) as the main cultivars within the facility, the continuous cropping problem is very serious, resulting in continuous cropping obstacles become increasingly obvious, the incidence of fusarium wilt increased year by year. Grafted watermelon roots developed to improve the growth of grafted roots of the conditions, resulting in robust plant growth. At the same time, the use of different purposes of the rootstock can make watermelon in different soil conditions under normal growth, such as the use of low temperature, drought, salt tolerance, barren and other characteristics of the rootstock. Secondly, the rootstock of the strong absorption of water absorption capacity, to promote the growth of grafted watermelon plants strong, large watermelon fruit, high yields. In addition, grafted watermelon seedlings grow fast early, for early maturing cultivation and overcome the seedless watermelon early growth slow defects is extremely favorable. So the use of pumpkin as a watermelon grafting rootstock, can effectively improve the effect of watermelon resistance to Fusarium wilts. And provide the theoretical basis and scientific basis for the further study of photosynthetic characteristics, disease resistance breeding and effective control of watermelon. In this experiment, the watermelon varieties with different resistance to fusarium wilt were selected, and the anti-fusarium wilt watermelon was studied systematically. There are changes in physiological characteristics during growth and development. In conclusion, grafting promotes the growth of watermelon and physiological characteristics of the index rose.
KEYWORDS: watermelon; fusarium wilt; growth period; physiological characteristics
With the development of material life, the importance of plants in life has become increasingly prominent, and indoor flowers are also popular. As we all know, plants have purified air, refreshing brainwashing, promote sleep, sterilization and other effects, such as mint, Clivia, aloe and so on. Therefore, the choice of plants corresponding to their own needs is particularly important, while to note that some flowers should not be placed indoors. And different flowers on the water, temperature, light, soil and other requirements are not the same.
The effects of Zn2+ stress on seed germination, seedling growth and chlorophyll content were studied in order to better understand the effect of heavy metal Zn on the growth and development of green plants. The concentration gradient of Zn2+ was 20, 50,100,150,200,300,500,700mg / L, and deionized water was used as control. The results showed that under the Zn2+ stress condition, the germination index of the rhubarb seeds increased with the increase of Zn2+ concentration. Germination potential, germination rate and germination index were the highest when Zn2+concentration was 100mg / L, the conductivity was the lowest at zinc concentration of 100mg / L, the root length, stem length and chlorophyll content of Zn2+ gradually reduced. The results showed that the amount of Zn2+ could promote seed germination, but the root length, bud length and chlorophyll content of seedlings could be affected by different degrees. The zinc fertilizer should be used in the production.
In this paper, the pollination and biology of apricot in Hongfeng and New Century were studied. The results are as follows: (1) The est pollination with the red variety is early, new century's best pollinating varieties is camel yellow. (2) The flowering period of different cultivars was different, and the flowering period of Hongfeng and other varieties was 3 - 7 days later than that of Baxing water apricot and other varieties, which provided germplasm for further breeding of late flowering varieties. (3) Hongfeng, the new century and other varieties of self-flowering rate of 0 - 3.61% range, is self-incompatible varieties. (4) The pollen germination rate of different cultivars was higher than 50%, which indicated that the pollen was mature and the fertility was strong, and the reason of low percentage of self-pollination was pollen abortion, the main reason was self and so on.
Sweet cherry is a type of fruit that is high on demand in exports for table consumption. Turkey is a gene centre for sweet cherry fruit. Fruits are produced over an extended period because of the ecological richness and large cultivation area, which allows Turkey to remain as the leader of sweet cherry production in the world. The variety, ‘0900 Ziraat’, also known as the Turkish sweet cherry fruit, has the highest production volume. Mazzard and Mahaleb are the commonly used rootstocks for sweet cherry cultivation; and Mazzard is used more frequently than Mahaleb. Clonal rootstocks are used to maintain cultivation in new orchards. The present study provides a detailed information on the current status of sweet cherry fruit cultivation in Turkey as well as its cultivation practices and exports. It is targeted that modern irrigation techniques, good agricultural practices, and increased cultivation areas are established to maintain Turkey’s position as the leader in global sweet cherry production and exports.
Vegetable production is an important sector of economy for farmers in Nepal. The analysis was carried out to explore the trends in vegetable production sector in Nepal along with the recent trend of some major vegetables in terms of area, production and yield. The time series data from 1977/78 to 2016/17 (40 years) of vegetables production and 5 years data (2011/12 - 2015/16) of major vegetables were collected from reliable source and analysis was done through Microsoft Excel. The results show that between 1977/78 and 2016/17 the area under vegetables cultivation has jumped by 222.8% while production is increased by 728.21% and productivity is increased by 156.6% during this course. The result also reveals that during the period of 5 years (2011/12 - 2015/16), solanaceous and cruciferous vegetables has an increasing trend in area, production and yield except for the area under cultivation for eggplant (declined by 5.2%) and for radish (declined by 6.0%) respectively while cucurbitaceous vegetables has increasing trend in area and production but an declining trend in yield except for the yield of cucumber (increased by 15.8%). However, the trend of other major vegetables is seen highly fluctuating over the years.
The technology of vermicomposting containing their leachates, teas and other extracts such as vermiwash as a result of earthworm action is widely applied for safe management of agricultural, industrial, domestic and hospital wastes. Remediation of polluted soils, improving crop productivity and inducing the resistance against biotic and abiotic stresses are other advantages of vermicompost derived liquids when used in agriculture. Contrary to the fact that chemical fertilizers are still widely used in agriculture, societies gradually become aware of the negative effects of these fertilizers on their health. Therefore, vermicompost derived liquids contain high amount of valuable plant nutrients which has the potential to be used as liquid fertilizer. This paper reviews the potential of vermicompost derived liquids as as an efficient combination of nutrient source of vermicompost derived liquids contributing to plant growth and acting as a deterrent to biotic and abiotic stresses.
To investigate the possible role of arbuscular mycrrhizal fungi (AMF) in alleviating the negative effects of salinity on Stevia rebaudiana (Bert.), the regenerated plantlets in tissue culture was transferred to pots in greenhouse and inoculated with Glomus intraradices. Salinity caused a significant decrease in chlorophyll content, photosynthesis efficiency and enhanced the electrolyte leakage. The use of AMF in salt –affected plants resulted in improved all above mentioned characteristics. Hydrogen peroxide and malondialdehyde (MDA) contents increased in salt stressed plants while a reduction was observed due to AMF inoculation. CAT activity showed a significant increase up to 2 g/l and then followed by decline at 5 g/l NaCl in both AMF and non-AMF treated stevia, however, AMF inoculated plants maintained lower CAT activity at all salinity levels (2 and 5 g/l). Enhanced POX activities in salt- treated stevia plants were decreased by inoculation of plants with AMF. The addition of NaCl to stevia plants also resulted in an enhanced activity of SOD whilst, AMF plants maintained higher SOD activity at all salinity levels than those of non-AMF inoculated plants. AMF inoculation was capable of alleviating the damage caused by salinity on stevia plants by reducing oxidative stress and improving photosynthesis efficiency.
Entomopathogens are microorganisms that pathogenic to insect pest. Several species of naturally occurring viz; fungi, bacteria, viruses and nematodes, infect a variety of insect pests and play an important role in agricultural crops controlling insect pest management. This kind of biopesticide has many advantages and alternative to chemical insecticides, highly specific, safe, and environmentally sustainable. Pest problems are an almost inevitable part of agriculture. They occur largely because agricultural systems are simplified and modifications of natural ecosystems. Viruses, bacteria are host specific and fungi generally have broader host range and can infect both underground and aboveground pests, soil-dwelling nature nematodes are more suitable for managing soil pests. Growing crops in monoculture provides concentrated food resource that allows pest populations to achieve higher densities in natural environments. Some of the most important problems occur when pests develop resistance to chemical pesticides. These cause highly significant damage to crops, there are also threats from emerging new strains of pests. Crops cultivation can make the physico-chemical environment more favourable for pest activity. Agricultural pests are reducing the yield and quality of produce by feeding on crops, transmitting diseases. Agricultural production significantly loss crop yields, suggest that improvements in pest management are significant forward for improving yields. Crop growers are under immense pressure to reduce the use of chemical pesticides without sacrificing yields, but at the same time manage of pests is becoming difficult due to pesticide resistance and the decreasing availability of products. Alternative methods are needed urgently. These need to be used as part of Integrated Pest Management safety and environmental impact.
Eucalyptus is an important source of cellulose and a widely cultivated plant. Biotechnology tools can save time spent in breeding and transcriptomic approaches generate a gene profile that allows the identification of candidates involved in processes of interest. RNA-seq is a commonly used technology for transcript analysis and it provides an overview of regulatory pathways. Here, we selected two contrasting Eucalyptus species for cold acclimatization and focused in responsive genes under cold condition aiming woody properties – lignin and cellulose. The number of differentially expressed genes identified in stem sections were 3.300 in Eucalyptus globulus and 1370 in Eucalyptus urograndis. We listed genes with expression higher than 10 times including NAC, MYB and DUF family members. The GO analysis indicates increased oxidative process for E. urograndis. This data can provide information for more detailed analyses for breeding, especially in perennial plants.