Table of Contents
Photonic crystals are a major discovery in physics and have an important influence on our present life. The biggest feature of the photonic crystals is it has bandgap which can block photons of a certain frequency, thus affecting the photon movement. This effect is like the influence of the semiconductor body on electrons. Therefore, research and discovery of the photonic crystal is a broad prospect, people has large expectation on the photonic crystal. The emergence of photonic crystals makes it possible for the miniaturization and integration of some aspects of information technology. Study of structure able to determines characteristics, thus the discovery of the photonic crystal structure and function will lay the foundation for the study of its application, in this paper, the study is focus on the research of material absorption of photonic crystal on Transverse Magnetic (TM) wave band. Firstly, the basic knowledge and principle of photonic crystal are introduced. Then, the research was carried out to study the effect of characteristic matrix method on photon crystal TM energy wave through designed experiments and analyzed by computer software.
Hexagonal tungsten trioxide (h-WO3) nanoflakes have been synthesized by a hydrothermal approach using L-lysine as the shape directing agent. The influence of hydrothermal reaction time and L-lysine content on the morphology of h-WO3 was investigated. The experimental results showed that the nanoflake morphology could be achieved at higher concentration of L-lysine. Based on the evolution of nanoflake morphology as a function of hydrothermal duration, a “dissolution-crystallization-Ostwald ripening” growth mechanism has been proposed. The electrochemical performance of h-WO3 nanoflakes has also been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that h-WO3 modified glassy carbon electrode (GCE) showed lower charge transfer resistance and enhancement in peak current attributed to the enrichment in electroactive surface area and faster electron transfer kinetics at h-WO3 modified GCE.
As the products are being used widely in almost part of Daily life, antibacterial textile products gain more importance. The necessity of antibacterial agents used due to the importance given to today's health and alternative products provided by natural routes has also revealed the necessity of this context. This work focuses on the usage of propolis as an antibacterial agent. On the other hand, it is aimed to gather information on the use of propolis for the purpose of giving antibacterial properties to textile materials.
Polycrystalline cuprous oxide (P-Cu2O) films are deposited on Cu substrates for various (0.2, 0.3 and 0.4 mbar) oxygen pressures (OP) by thermal evaporator. The XRD pattern shows the development of Cu (200), Cu2O (200) and Cu2O (311) diffraction planes which confirms the deposition of P-Cu2O films. The intensity of Cu2O (200) and Cu2O (311) planes is associated with the increase of OP. The crystallite size and microstrains developed in (200) and (311) planes are found to be 19.31, 21.18, 11.32 nm; 22.04, 23.11, 12.08 nm and 0.113, 0.103, 0.193; 0.099, 0.096, 0.181 with increasing OP respectively. The d-spacing and lattice constant are found to be 0.210, 0.128 nm and 0.421, 0.425 nm respectively. The bond length of P-Cu2O film is found to be 0.255 nm. The crystallites/unit area of these planes is found to be 12.21, 7.46, 45.16 nm-2 and 8.21, 5.75, 37.16 nm-2 respectively. The texture coefficients of these planes are found to be 1.22, 1.26, 1.11 and 0.78, 0.74 and 0.56 with increasing OP respectively. The O and Cu contents are found to be 5.31, 5.92, 6.94 wt % and 83.01, 82.44, 80.65 wt % respectively. The thickness and growth rate of P-Cu2O films are found to be 87.9, 71.9, 65.5 nm and 17.6, 14.2, 13.1 (nm min-1) with increasing OP respectively. The SEM microstructures reveal the formations of patches of irregular shapes, rounded nano-particles, clouds of nano-particles and their distribution depend on the increasing OP. The refractive index and energy band gap of P-Cu2O films are found to be 1.96, 1.89, 1.92 and 2.47, 2.44 and 2.25 eV with increasing OP respectively.