Exploring Mechanical Alloying to Produce Doped ZnO

Belén Sotillo, María Esther Solana, Paloma Fernández

Article ID: 991
Vol 1, Issue 1, 2018

VIEWS - 101 (Abstract) 74 (PDF)

Abstract


In this work, a mixture of ZnO and CeO2 powders are subjected to a milling procedure to monitor the mechanical alloying processes. ZnO-CeO2 powders have been milled during 10 to 60 hours, and have been characterized by X-ray diffraction (XRD), UV-Vis absorption, Raman and photoluminescence spectroscopies, in order to study the present phases, the tensional state of material and particle sizes. The evolution of the phases present with the time of milling, and the possible changes in the lattice parameter will help us to estimate the efficiency of the grinding process for obtaining Ce doped ZnO.

Keywords


Mechanical Alloying; Severe Plastic Deformation; Doped ZnO

Full Text:

PDF


References


1. Sharma, P., Sharma, S., & Khanduja, D. (2015). On the use of ball milling for the production of ceramic powders. Materials and Manufacturing Processes, 30(11), 1370-1376.

2. Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in materials science, 46(1-2), 1-184.

3. Forrester, J. S., Zobec, J. S., Phelan, D., & Kisi, E. H. (2004). Synthesis of PbTiO3 ceramics using mechanical alloying and solid state sintering. Journal of Solid State Chemistry, 177(10), 3553-3559.

4. Wongmaneerung, R., Yimnirun, R., & Ananta, S. (2006). Effects of milling time and calcination condition on phase formation and particle size of lead titanate nanopowders prepared by vibro-milling. Materials Letters, 60(21-22), 2666-2671.

5. Canakci, A., Erdemir, F., Varol, T., & Patir, A. (2013). Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis. Measurement, 46(9), 3532-3540.

6. Suñol Martínez, J. J., & Fort, J. (2008). Materials developed by mechanical alloying and melt spinning. © International Review of Physics, 2008, vol. 2, núm. 1, p. 31-35.

7. Faisal, M., Ismail, A. A., Ibrahim, A. A., Bouzid, H., & Al-Sayari, S. A. (2013). Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chemical engineering journal, 229, 225-233.

8. Karunakaran, C., Gomathisankar, P., & Manikandan, G. (2010). Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Materials Chemistry and Physics, 123(2-3), 585-594.

9. http://abulafia.mt.ic.ac.uk/shannon/ptable.php

10. Urbieta, A., Fernández, P., & Piqueras, J. (2012). Nanowires and stacks of nanoplates of Mn doped ZnO synthesized by thermal evaporation-deposition. Materials Chemistry and Physics, 132(2-3), 1119-1124.

11. Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta metallurgica, 1(1), 22-31.

12. Zak, A. K., Majid, W. A., Abrishami, M. E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13(1), 251-256.

13. Cuscó, R., Alarcón-Lladó, E., Ibanez, J., Artús, L., Jimenez, J., Wang, B., & Callahan, M. J. (2007). Temperature dependence of Raman scattering in ZnO. Physical Review B, 75(16), 165202.

14. Wu, Z., Li, M., Howe, J., Meyer III, H. M., & Overbury, S. H. (2010). Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir, 26(21), 16595-16606.

15. Davis, E. A., & Mott, N. (1970). Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22(179), 0903-0922.

16. Hvedstrup Jensen, G., & Skettrup, T. (1973). Absorption edge and urbach's rule in ZnO. physica status solidi (b), 60(1), 169-173.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.