Table of Contents
The Cu2–xSe nanoparticles were synthesized by high temperature pyrolysis, modified with aminated polyethylene glycol in aqueous solution and loaded with compound 2,2′–azobis[2–(2–imidazolin–2–yl)propane] dihydrochloride (AIPH). The obtained nanomaterials can induce photothermal effect and use heat to promote the generation of toxic AIPH radicals under the irradiation of near-infrared laser (808 nm), which can effectively kill cancer cells. A series of in vitro experiments can preliminarily prove that Cu2–xSe–AIPH nanomaterials have strong photothermal conversion ability, good biocompatibility and anticancer properties.
In order to explore the influence of the ferroelectric surface on the structure and properties of semiconductor oxides, the growth of CdS nanocrystals was regulated and controlled by taking single-crystal perovskite PbTiO3 nanosheets as the substrate through a simple hydrothermal method. Through composition design, a series of PbTiO3-CdS nanocomposite materials with different loading concentrations were prepared, and their microstructure and photocatalytic properties were systematically analyzed. Studies show that in the prepared product, CdS nanoparticles selectively grow on the surfaces of PbTiO3 nanosheets, and their morphology is affected by the exposed surfaces of PbTiO3 nanosheets. There is a clear interface between the PbTiO3 substrate and CdS nanoparticles. The concentration of the initial reactant and the time of hydrothermal reaction also significantly affect the crystal morphology of CdS. Photocatalysis studies have shown that the prepared PbTiO3-CdS nanocomposite material has a significant degradation effect on 10 mg/L of Rhodamine B aqueous solution. The degradation efficiency rises with the increase of CdS loading concentration. When degrading 10 mg/L Rhodamine B aqueous solution, the PbTiO3-CdS sample with a mass fraction of 3% can reach a degradation rate of 72% within 120 min.
Surface-enhanced Raman scattering (SERS) spectrum has the characteristics of fast-detection, high-sensitivity and low-requirements for sample pretreatment. It plays a more and more important role in the detection of organic pollutants. In this study, MIL-101 and Au nanoparticles were prepared by hydrothermal method and aqueous solution reduction method respectively, and MIL-101/Au composite nanoparticles were prepared by electrostatic interaction. The SERS properties of the composite substrate were optimized by adjusting the size of Au nanoparticles and the surface distribution density of MIL-101 nanoparticles. The detection limit of Rhodamine 6G (R6G) for the composite substrate with the optimal ratio was investigated, which was as low as 10–11 M. It is proved that MIL-101/Au composite nanoparticles have high sensitivity to probe molecules. When they are applied to the detection of persistent organic pollutants, the detection limit for fluoranthene can reach 10–9 M and for 3,3’,4,4’-tetrachlorobiphenyl (PCB-77) can reach 10–5 M.
This work shows the results of the biosynthesis of silver nanoparticles using the microalga Chlorella sp, using growth media with different concentrations of glycerol, between 5%–20%, and different light and temperature conditions. The synthesis of nanoparticles was studied using supernatants and pellets from autotrophic, heterotrophic and mixotrophic cultures of the microalga. The presence of nanoparticles was verified by ultraviolet-visible spectroscopy and the samples showing the highest concentration of nanoparticles were characterized by scanning electron microscopy. The mixotrophic growth conditions favored the excretion of exopolymers that enhanced the reduction of silver and thus the formation of nanoparticles. The nanoparticles obtained presented predominantly ellipsoidal shape with dimensions of 108 nm × 156 nm and 87 nm × 123 nm for the reductions carried out with the supernatants of the mixotrophic cultures with 5% and 10% glycerol, respectively.
Electrospinning nanofiber membrane has the advantages of wide raw materials, large specific surface area, and high porosity. It is an ideal separator material for lithium-ion batteries. This paper first introduces two common electrospinning nanofiber diaphragms: polymer, polymer, and inorganic composite, and then focuses on the modification methods of composite modification, blending modification, and inorganic modification, as well as the methods of electrospinning nano modified polyolefin diaphragm. Finally, the development direction of the electrospinning lithium-ion battery separator has prospected.
The ways of developing functional textiles based on nanomaterials were introduced, and the latest research achievements of nanomaterials in such aspects as flame retardancy, antibacterial, super-hydrophobic, self-cleaning, UV resistance, and anti-static textiles were reviewed. The main technical obstacles to the large-scale application of nanomaterials in functional textiles were pointed out, the possible solutions were discussed, and the development of functional textiles by nanomaterials has been prospected.
In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
Nanotechnology is a subject that studies, processes, and applies various functional materials, equipment, and systems, and controls substances on a nanoscale. Nanomedicine refers to its application in diagnosing, treating, preventing, and monitoring various diseases. Drugs administered through eye drops must travel a long distance to avoid various eye barriers reaching the posterior segment of the eye, to achieve the lowest drug level. This review focuses on nanotechnology-based eye disease treatment systems and highlights the obstacles affecting the drug management of eyes and nano-systems for the treatment of eye diseases. This paper summarizes the development prospect of nanotechnology and the challenges it faces in the treatment and diagnosis of ophthalmic diseases, to provide information and new ideas for the implementation of treatment and the development of a refractory eye disease management system.
The boom in nanotechnology over the last three decades is undeniable. Responsible for this interest in nanomaterials are mainly the nanostructured forms of carbon, since historically they were the ones that inaugurated the study of nanomaterials with the discovery of fullerenes in 1985 and carbon nanotubes in 1991. Although a variety of techniques exist to produce these materials, chemical vapor deposition (CVD) is particularly valuable as it allows the production of a wide variety of carbon nanostructures, is versatile, scalable, easy to implement and relatively low cost. This review article highlights the importance of CVD and details its principles, operating conditions and parameters, as well as its main variants. A description of the technique used to produce fullerenes, nano-ceramics, carbon nanotubes, nanospheres, graphene and others is made, emphasizing the specific parameters for each synthesis.