Synthesis of carbon nanostructures using the chemical vapor deposi-tion technique: An overview

Ali Roberto Ruiz Hernández, Adrián Gutiérrez Cruz, Daniela Luna, José Fernando Vega, Gerardo Patiño Guillén, Alan Arceta Lozano, Jessica Campos-Delgado

Article ID: 1682
Vol 5, Issue 1, 2022

VIEWS - 250 (Abstract) 182 (PDF)

Abstract


The boom in nanotechnology over the last three decades is undeniable. Responsible for this interest in nanomaterials are mainly the nanostructured forms of carbon, since historically they were the ones that inaugurated the study of nanomaterials with the discovery of fullerenes in 1985 and carbon nanotubes in 1991. Although a variety of techniques exist to produce these materials, chemical vapor deposition (CVD) is particularly valuable as it allows the production of a wide variety of carbon nanostructures, is versatile, scalable, easy to implement and relatively low cost. This review article highlights the importance of CVD and details its principles, operating conditions and parameters, as well as its main variants. A description of the technique used to produce fullerenes, nano-ceramics, carbon nanotubes, nanospheres, graphene and others is made, emphasizing the specific parameters for each synthesis.


Keywords


Chemical Vapor Deposition, Carbon Nanostructures, Synthesis

Full Text:

PDF


References


1. Kroto HW, Heath JR, O’Brien SC, et al. C60: Buckmisterfullerene. Nature 1985; 318(6042): 162–163. doi: 10.1038/318162a0.

2. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56–58. doi: 10.1038/354056a0.

3. Iijima S, Ichihashi T. Single–shell carbon nanotubes of 1–nm diameter. Nature 1993; 363(6430): 603–605. doi: 10.1038/363603a0.

4. Ugarte D. Curling and closure of graphitic networks under electron–beam irradiation. Nature 1992; 359(6397): 707–709. doi: 10.1038/359707a0.

5. Campos–Delgado J, Romo–Herrera J, Jia X, et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nanoletters 2008; 8(9): 2773–2778. doi: 10.1021/nl801316d.

6. Georgakilas V, Perman JA, Tucek J, et al. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews 2015; 115(11): 4744–4822. doi: 10.1021/cr500304f.

7. Serp P, Feurer R, Kalck P, et al. A chemical vapor deposition process for the production of carbon nanospheres. Carbon 2001; 39(4): 615–628. doi: 10.1016/S0008–6223(00)00324–9.

8. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666–669. doi: 10.1126/science.1102896.

9. The Nobel Prize. The Nobel Prize in Physics 2010. 2010. Available from:

10. https://www.nobelprize.org/prizes/physics/2010/summary/

11. Avouris P, Dimitrakopoulos C. Graphene: Synthesis and Applications. Materials Today 2012; 15(3): 86–97. doi: 10.1016/S1369–7021(12)70044–5.

12. Dong Y, Guo S, Mao H, et al. In situ growth of CVD graphene directly on dielectric surface toward application. ACS Applied Electronic Materials 2020; 2(1): 238–246. doi: 10.1021/acsaelm.9b00719.

13. Frederick N. Cn fullerenes. 2019. Available from: https://nanotube.msu.edu/fullerene/fullerene–isomers.html.

14. Hashmi MA, Lein M. Carbon nano–onions as photosensitizers: Stacking–induced red–shift. The Journal of Physical Chemistry C 2018; 122(4): 2422–2431. doi: 10.1021/acs.jpcc.7b11421.

15. Manini N. 3D structures. 2020. Available from: http://materia.fisica.unimi.it/manini/dida/structures.html.

16. Veiga RGA, Tomanek D, Frederick N. Tube ASP: Carbon nanotube generation applet [Internet]. Michigan State University. 2020. Available from: https://nanotube.msu.edu/tubeASP/.

17. VESTA. Momma K, Izumi F. (Version 3.5.5) [Computer application]. 2006–2020. Available from: https://jpminerals.org/vesta/en/download.html.

18. Teo K, Singh C, Chhowalla M, et al. Catalytic synthesis of carbon nanotubes and nanofibers. In: Nalwa H (editor). Encyclopedia of nanoscience and nanotechnology. California: American Scientific Publishers; 2003. p. 665–686. Available from: http://nanotubes.rutgers.edu/PDFs/Catalytic%20Synthesis%20of%20Carbon%20Nanotubes%20and%20Nanofibers.pdf.

19. Choi K, Rhee S. Effect of carrier gas on chemical vapor deposition of copper with (Hexafluoroacetylacetonate)Cu (I)(3,3–Dimethyl 1 butene). Journal of the Electrochemical Society 2001; 148(7): C473–C478. doi: 10.1149/1.1375168.

20. Ruan G, Sun Z, Peng Z, et al. Growth of graphene from food, insects and waste. ACS Nano 2011; 5(9): 7601–7607. doi: 10.1021/nn202625c.

21. Al–Sarraf A, Khodair Z, Manssor M, et al. Preparation and characterization of ZnO nanotripods and nanoflowers by atmospheric pressure chemical vapor deposition (APCVD) technique. AIP Conference Proceedings 2018; 1968(1): 030005. doi: 10.1063/1.5039192.

22. Noor N, Chew C, Bhachu C, et al. Influencing FTO thin film growth with thin seeding layers: A route to microstructural modification. Journal of Materials Chemistry C 2015; 3(36): 9359–9368. doi: 10.1039/C5TC02144H.

23. Alarcón–Salazar J, López–Estopier R, Quiroga–González E, et al. Silicon–rich oxide obtained by low–pressure chemical vapor deposition to develop silicon light sources. In: Neralla S (editor). Chemical vapor deposition—Recent advances and applications in optical, solar cells and solid–state devices. InTechOpen; 2016. p. 159–181. doi: 10.5772/63012.

24. Nozaki T, Ohnishi K, Okazaki K, et al. Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 2007; 45(2): 364–374. doi: 10.1016/j.carbon.2006.09.009.

25. Barankin MD, Gonzalez E, Ladwig AM, et al. Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells 2007; 91(10): 924–930. doi: 10.1016/j.solmat.2007.02.009.

26. Hussain A, Liao Y, Zhang Q, et al. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale 2018; 10(20): 9752–9759. doi: 10.1039/c8nr00716k.

27. Kumar M, Ando Y. Carbon nanotube synthesis and growth mechanism. Nanotechnology Perceptions 2011; 6(1): 147–170. doi: 10.4024/N02KU10A.ntp.06.01.

28. Pottathara YB, Grohens Y, Kokol V, et al. Synthesis and processing of emerging two-dimensional nanomaterials. In: Pottathara Y, Thomas S, Kalarikkal N, et al. (editors). Nanomaterials synthesis. New York: Elsevier; 2019. p. 1–25. doi: 10.1016/B978-0-12-815751-0.00001-8.

29. Benelmekki M, Erbe A. Nanostructured thin films—Background, preparation and relation to the technological revolution of the 21st century. In: Benelmekki M, Erbe A (editors). Frontiers of nanoscience. New York: Elsevier; 2019. p. 1–34. doi: 10.1016/B978-0-08-102572-7.00001-5.

30. Mattox DM. Plasmas and plasma enhanced CVD. In: Mattox DM (editors). The foundations of vacuum coating technology. New York: Elsevier; 2018. p. 61–86. doi: 10.1016/b978-0-12-813084-1.00003-0.

31. Sengupta J. Carbon nanotube fabrication at industrial scale. In: Hussain CM (editor). Handbook of nanomaterials for industrial applications. New York: Elsevier; 2018. p. 172–194. doi: 10.1016/b978-0-12-813351-4.00010-9.

32. Scott LT, Boorum MH, McMahon BJ, et al. A rational chemical synthesis of C60. Science 2002; 295(5559): 1500–1503. doi: 10.1126/science.1068427.

33. Takehara H, Fujiwara M, Arikawa M, et al. Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 2005; 43(2): 311–319. doi: 10.1016/j.carbon.2004.09.017.

34. Liu Y, Vander Wal RL, Khabashesku VN. Functionalization of carbon nano-onions by direct fluorination. Chemistry of Materials 2007; 19(4): 778–786. doi: 10.1021/cm062177j.

35. Kleckley S, Wang H, Oladeji I, et al. Fullerenes and polymers produced by the chemical vapor deposition method. ACS Symposium Series 1998; 681(1): 51–60. doi: 10.1021/bk-1998-0681.ch006.

36. Gao Y, Zhou Y, Qian M, et al. Chemical activations of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 2012; 51(1): 52–58. doi: 10.1016/j.carbon.2012.08.009.

37. Santiago D, Rodríguez GG, Palkar A, et al. Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 2012; 28(49): 17202–17210. doi: 10.1021/la3031396.

38. Zhang W, Fu J, Chang J, et al. Fabrication and purification of carbon nano onions. Carbon 2015; 82(1): 610. doi: 10.1016/j.carbon.2014.10.056.

39. Zhang C, Li J, Shi C, et al. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst. Carbon 2011; 49(4): 1151–1158. doi: 10.1016/j.carbon.2010.11.030.

40. Chen X, Deng F, Wang J, et al. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters 2001; 336(3–4): 201–204. doi: 10.1016/S0009-2614(01)00085-9.

41. Dresselhaus MS, Dresselhaus G, Eklund PC, et al. Carbon nanotubes. In: Andreoni W (editor). The physics of fullerene-based and fullerene-related materials. Dordrecht: Springer; 2000. p. 331–379. doi: 10.1007/978-94-011-4038-6_9.

42. McKee GS, Deck CP, Vecchio KS. Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis. Carbon 2009; 47(8): 2085–2094. doi: 10.1016/j.carbon.2009.03.060.

43. Yuan D. Property control of single walled carbon nanotubes and their devices [PhD thesis]. Durham (NC): Duke University; 2008.

44. Jacobberger RM, Machhi R, Wroblewski J, et al. Simple graphene synthesis via chemical vapor deposition. Journal of Chemical Education 2015; 92(11): 1903–1907. doi: 10.1021/acs.jchemed.5b00126.

45. Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature 2012; 490(7419): 192–200. doi: 10.1038/nature11458.

46. Mouras S, Hamwi A, Djurado D, et al. New synthesis of first stage graphite intercalation compounds with fluorides. Journal of Fluorine Chemistry 1987; 35(1): 151. doi: 10.1016/0022-1139(87)95120-7.

47. Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon 2010; 48(8): 2127–2150. doi: 10.1016/j.carbon.2010.01.058.

48. O’Brien P, Pickett NL, Otway DJ. Developments in CVD delivery systems: A chemist’s perspective on the chemical and physical interactions between precursors. Chemical Vapor Deposition 2002; 8(6): 237–249. doi: 10.1002/1521-3862(20021203)8:6<237::AID-CVDE237>3.0.CO;2-O.

49. Ionescu MI, Zhang Y, Li R, et al. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Applied Surface Science 2011; 257(15): 6843–6849. doi: 10.1016/j.apsusc.2011.03.011.

50. Hawkins MR, Robinson M (inventors). Epsilon Technology, Inc. (assignee). Gas injectors for reaction chambers in CVD systems. US patent. 5,221,556. 1993 Jun 22.

51. Vahlas C, Caussat B, Senocq F, et al. A delivery system for precursor vapors based on sublimation in a fluidized bed. Chemical Vapor Deposition 2007; 13(2–3): 123–129. doi: 10.1002/1521-3862(20021203)8:6<237::AID-CVDE237>3.0.CO;2-O.

52. Maury F, Duminica FD, Senocq F. Optimization of the vaporization of liquid and solid CVD precursors: Experimental and modeling approaches. Chemical Vapor Deposition 2007; 13(11): 638–643. doi: 10.1002/cvde.200706600.

53. Díaz-Chacóna LC, Arévalo-Festerb JE, Plaza-Pirelab EV, et al. Characterization by scanning electron microscopy of carbon micro and nanospheres obtained from naphthalene using the chemical vapor deposition technique (in Spanish). Acta Microscópica 2011; 20(1): 54–59. Available from: https://www.acta-microscopica.org/acta/article/view/419/364.

54. Li M, Wang C, O’Connell MJ, et al. Carbon nanosphere adsorbents for removal of arsenate and selenate from water. Environmental Science: Nano 2015; 2(3): 245–250. doi: 10.1039/c4en00204k.

55. Nieto-Márquez A, Romero R, Romero A, et al. Carbon nanospheres: Synthesis, physicochemical properties and applications. Journal of Materials Chemistry 2011; 21(6): 1664–1672. doi: 10.1039/c0jm01350a.

56. Ruan S, Zhu B, Zhang H, et al. A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging. Journal of Colloid and Interface Science 2014; 422(1): 25–29. doi: 10.1016/j.jcis.2014.02.006.

57. Wang J, Hu Z, Xu J, et al. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Materials 2014; 6(2): 1–11. doi: 10.1038/am.2013.79.

58. Campos-Delgado J, Farhat H, Kim YA, et al. Resonant Raman study on bulk and isolated graphitic nanoribbons. Small 2009; 5(23): 2698–2702. doi: 10.1002/smll.200901059.

59. Muangrat W, Wongwiriyapan W, Morimoto S, et al. Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Scientific Reports 2019; 9(1): 1–9. doi: 10.1038/s41598-019-44315-y.

60. Chuang AT, Boskovic BO, Robertson J. Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapor deposition. Diamond and Related Materials 2006; 15(4–8): 1103–1106. doi: 10.1016/j.diamond.2005.11.004.

61. Hiraki H, Jiang N, Wang H, et al. Electron emission from nano-structured carbon composite materials—An important role of the interface for enhancing the emission. Journal De Physique IV (Proceedings) 2006; 132(1): 111–115. doi: 10.1051/jp4:2006132022.

62. Fan L, Zhu M, Lee X, et al. Direct synthesis of graphene quantum dots by chemical vapor deposition. Particle and Particle Systems Characterization 2013; 30(9): 764–769. doi: 10.1002/ppsc.201300125.

63. Zhang ZP, Zhang J, Chen N, et al. Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science 2012; 8(1): 31–54. doi: 10.1039/c4ee02594f.




DOI: https://doi.org/10.24294/can.v5i1.1682

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.