Chemistry of molecular assemblies: macrocyclic compounds and their applications
Vol 2, Issue 2, 2019, Article identifier:
VIEWS - 314 (Abstract) 6 (PDF)
Abstract
In this review devoted to supramolecular chemistry and their molecular assemblies. Review covers applications of calix system, non-covalent interaction, fluorescence sensor, biosensor, nano biosensor. Macrocyclic compounds attracted a lot of attention as with suitable attached groups it behaves as a good aspirant for recognition of many moieties, it’s also highly selective and specific towards bio molecules, anions, cations and neutral substrate.
Keywords
Full Text:
PDFReferences
Dietrich B, Viout P, Lehn J-M. Macrocyclic chemistry: aspects of organic and inorganic supramolecular chemistry. Acta Crystallogr B. 1993;49:1074.
Melson G. Coordination chemistry of macrocyclic compounds: Springer Science & Business Media; 2012.
Suh MP. Macrocyclic chemistry of nickel. Advances in Inorganic Chemistry. Vol 44: Elsevier; 1996: 93-146.
Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nano-architectures by covalent assembly of molecular building blocks. Nature nanotechnology. 2007;2(11):687.
Stendahl JC, Rao MS, Guler MO, Stupp SI. Intermolecular forces in the self‐assembly of peptide amphiphile nanofibers. Advanced Functional Materials. 2006;16(4):499-508.
Varughese S. Non-covalent routes to tune the optical properties of molecular materials. Journal of Materials Chemistry C. 2014;2(18):3499-3516.
Xie Y, Soh A. Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Materials Letters. 2005;59(8-9):971-975.
Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews. 2004;104(1):293-346.
Davis AP, Wareham RS. Carbohydrate recognition through noncovalent interactions: a challenge for biomimetic and supramolecular chemistry. Angewandte Chemie International Edition. 1999;38(20):2978-2996.
Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Accounts of Chemical Research. 2003;36(8):621-630.
Lehn J-M. Supramolecular chemistry. Vol 1: Vch, Weinheim; 1995.
Steed JW, Atwood JL. Supramolecular chemistry: John Wiley & Sons; 2013.
Sommer RD, Rheingold AL, Goshe AJ, Bosnich B. Supramolecular chemistry: molecular recognition and self-assembly using rigid spacer-chelators bearing cofacial terpyridyl palladium (II) complexes separated by 7 Å. Journal of the American Chemical Society. 2001;123(17):3940-3952.
Aakeröy CB, Beatty AM, Helfrich BA. “Total Synthesis” Supramolecular Style: Design and Hydrogen‐Bond‐Directed Assembly of Ternary Supermolecules. Angewandte Chemie International Edition. 2001;40(17):3240-3242.
Hua Y, Flood AH. Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chemical Society Reviews. 2010;39(4):1262-1271.
Conn MM, Rebek J. Self-assembling capsules. Chemical reviews. 1997;97(5):1647-1668.
Vigasin AA. Molecular Complexes in Earth's Planetary, Cometary and Interstellar Atmospheres: World Scientific; 1998.
Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angewandte Chemie International Edition. 1995;34(21):2311-2327.
Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ. Hierarchy of supramolecular synthons: persistent carboxylic acid••• pyridine hydrogen bonds in cocrystals that also contain a hydroxyl moiety. Crystal Growth and Design. 2008;8(12):4533-4545.
Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences. 2002;99(8):5133-5138.
Lehn J-M. Supramolecular chemistry. Science. 1993;260(5115):1762-1764.
Bell TW, Hext NM. Supramolecular optical chemosensors for organic analytes. Chemical Society Reviews. 2004;33(9):589-598.
Rubianes MD, Rivas GA. Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors. Electrochemistry communications. 2007;9(3):480-484.
Moradi M, Yamini Y, Rezaei F, Tahmasebi E, Esrafili A. Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent. Analyst. 2012;137(15):3549-3557.
Bie H-Y, Yu J-H, Xu J-Q, et al. Synthesis, structure and non-linear optical property of a copper (II) thiocyanate three-dimensional supramolecular compound. Journal of molecular structure. 2003;660(1):107-112.
Hu Q-D, Tang G-P, Chu PK. Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Accounts of Chemical Research. 2014;47(7):2017-2025.
Bhatt KD, Gupte HS, Makwana BA, Vyas DJ, Maity D, Jain VK. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe (III), Co (II) and Cu (II). Journal of fluorescence. 2012;22(6):1493-1500.
Bhatt KD, Makwana BA, Vyas DJ, Mishra DR, Jain VK. Selective recognition by novel calix system: ICT based chemosensor for metal ions. Journal of Luminescence. 2014;146:450-457.
Bhatt KD, Vyas DJ, Gupte HS, Makwana BA, Darjee SM, Jain VK. Solid phase extraction, preconcentration and sequential separation of U (VI), Th (IV), La (III) and Ce (III) by Octa-O-methoxy resorcin [4] arene based Amberlite XAD-4 Chelating Resin. World J Anal Chem. 2014;2(2):31-41.
Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK. Highly stable water dispersible calix [4] pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co (II) ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;121:94-100.
Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK, Shah H. Turn-on fluorescence probe for selective detection of Hg (II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample. Chinese Chemical Letters. 2016;27(5):731-737.
Makwana BA, Vyas DJ, Bhatt KD, Jain VK, Agrawal YK. Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe 3+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134:73-80.
Kumar A, Sun S-S, Lees AJ. Directed assembly metallocyclic supramolecular systems for molecular recognition and chemical sensing. Coordination Chemistry Reviews. 2008;252(8-9):922-939.
Fabbrizzi L, Poggi A. Sensors and switches from supramolecular chemistry. Chemical Society Reviews. 1995;24(3):197-202.
Karuppannan S, Chambron JC. Supramolecular chemical sensors based on pyrene monomer–excimer dual luminescence. Chemistry–An Asian Journal. 2011;6(4):964-984.
Valério C, Fillaut J-L, Ruiz J, Guittard J, Blais J-C, Astruc D. The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. Journal of the American Chemical Society. 1997;119(10):2588-2589.
Rurack K, Resch-Genger U, Bricks JL, Spieles M. Cation-triggered ‘switching on’of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores. Chemical Communications. 2000(21):2103-2104.
Lee YH, Lee MH, Zhang JF, Kim JS. Pyrene excimer-based calix [4] arene FRET chemosensor for mercury (II). The Journal of organic chemistry. 2010;75(21):7159-7165.
Lee MH, Kim HJ, Yoon S, Park N, Kim JS. Metal ion induced FRET OFF− ON in Tren/Dansyl-appended rhodamine. Organic letters. 2008;10(2):213-216.
Cha NR, Moon SY, Chang S-K. New ON–OFF type Ca2+-selective fluoroionophore having boron–dipyrromethene fluorophores. Tetrahedron letters. 2003;44(45):8265-8268.
Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coordination Chemistry Reviews. 2004;248(1-2):205-229.
Adler-Abramovich L, Gazit E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chemical Society Reviews. 2014;43(20):6881-6893.
Childs LJ, Alcock NW, Hannon MJ. Assembly of Nano‐Scale Circular Supramolecular Arrays through π–π Aggregation of Arc‐Shaped Helicate Units. Angewandte Chemie. 2001;113(6):1113-1115.
Taton TA, Mucic RC, Mirkin CA, Letsinger RL. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures. Journal of the American Chemical Society. 2000;122(26):6305-6306.
Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical reviews. 2010;110(4):1857-1959.
Decher G, Schlenoff JB. Multilayer thin films: sequential assembly of nanocomposite materials: John Wiley & Sons; 2006.
Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Accounts of Chemical Research. 2001;34(3):181-190.
Fedlheim DL, Foss CA. Metal nanoparticles: synthesis, characterization, and applications: CRC press; 2001.
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews. 2011;112(4):2373-2433.
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Advanced drug delivery reviews. 2012;64:83-101.
Panáček A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B. 2006;110(33):16248-16253.
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. 2007.
Wang H, Liu K, Chen K-J, et al. A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library. ACS nano. 2010;4(10):6235-6243.
Wang X, Qu K, Xu B, Ren J, Qu X. Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Research. 2011;4(9):908-920.
Tang B, Cao L, Xu K, et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry-A European Journal. 2008;14(12):3637-3644.
DOI: http://dx.doi.org/10.24294/ace.v1i2.636
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.