Recent advancements in the surface treatments for enhanced biocompatibility and corrosion resistance of titanium-based biomedical implants

Abhinay Thakur, Ashish Kumar

Article ID: 2042
Vol 7, Issue 1, 2024

VIEWS - 479 (Abstract) 176 (PDF)


Titanium-based biomedical implants are widely used owing to their biocompatibility, corrosion resistance and mechanical strength. Although, they still face challenges such as poor osseointegration and implant failure caused by corrosion. To address these challenges, various surface treatments have emerged to enhance the biocompatibility and corrosion resistance of titanium implants. This review article presents a concise overview of the innovative surface treatments for enhanced corrosion resistance and biocompatibility of titanium-based biomedical implants. The surface treatment briefly discussed includes physical, chemical, and biological treatments, such as plasma spraying, anodization, electrochemical deposition, and biomimetic coating. Furthermore, this article also highlights the importance of surface treatments to enhance the biological performance of titanium-based implants. This review provides insights for researchers and clinicians in the field of titanium-based biomaterials and may contribute to the development of more effective and durable biomedical implants.


biomedical implants; surface engineering; titanium; alloys; biocompatibility; surface coatings

Full Text:



1. Wei Q. Emerging approaches to the surface modification of textiles. Surface Modification of Textiles 2009; 318–323. doi: 10.1533/9781845696689.318

2. Zhang K, Liu T, Li JA, et al. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. Journal of Biomedical Materials Research Part A 2014; 102(2): 588–609. doi: 10.1002/jbm.a.34714

3. Bekmurzayeva A, Duncanson WJ, Azevedo HS, Kanayeva D. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. Materials Science and Engineering: C 2018; 93: 1073–1089. doi: 10.1016/j.msec.2018.08.049

4. Izman S, Abdul-Kadir MR, Anwar M, et al. Surface modification techniques for biomedical grade of titanium alloys: Oxidation, carburization and ion implantation processes. In: Amin AKMN (editor). Titanium Alloys—Towards Achieving Enhanced Properties For Diversified Applications, 1st ed. IntechOpen; 2012.

5. Huang S, Liang N, Hu Y, et al. Polydopamine-assisted surface modification for bone biosubstitutes. Biomed Research International 2016; 2016: 2389895. doi: 10.1155/2016/2389895

6. Zhang LC, Chen LY, Wang L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Advanced Engineering Materials 2019; 22(5): 1901258. doi: 10.1002/adem.201901258

7. Liu Y, Bao C, Wismeijer D, Wu G. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Materials Science and Engineering: C 2015; 49: 323–329. doi: 10.1016/j.msec.2015.01.007

8. Jaganathan SK, Supriyanto E, Murugesan S, et al. Biomaterials in cardiovascular research: Applications and clinical implications. Biomed Research International 2014; 2014: 459465. doi: 10.1155/2014/459465

9. Mahdavian AR, Mirrahimi MAS. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal 2010; 159(1–3): 264–271. doi: 10.1016/j.cej.2010.02.041

10. Bai L, Gong C, Chen X, et al. Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications. Metals 2019; 9(9): 1004. doi: 10.3390/met9091004

11. Sidhu SS, Singh H, Gepreel MAH. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Materials Science and Engineering: C 2021; 121: 111661. doi: 10.1016/j.msec.2020.111661

12. Sarraf M, Ghomi ER, Alipour S, et al. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Design and Manufacturing 2022; 5(2): 371–395. doi: 10.1007/s42242-021-00170-3

13. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C 2019; 102: 844–862. doi: 10.1016/j.msec.2019.04.064

14. Hacioglu T, Tezcaner A, Abbas S, Evis Z. Preparation and characteristics of co-doped hydroxyapatite biomimetic coatings on pretreated Ti6Al4V alloy. Surface Review and Letters 2020; 27(11): 2050012. doi: 10.1142/S0218625X20500122

15. Kalyoncuoglu UT, Yilmaz B, Evis Z, et al. Evaluation of the chitosan-coating effectiveness on a dental titanium alloy in terms of microbial and fibroblastic attachment and the effect of aging. Materials and Technologies 2015; 49(6): 925–931. doi: 10.17222/mit.2014.239

16. Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces 2007; 60(2): 137–157. doi: 10.1016/j.colsurfb.2007.06.019

17. Mahapatro A. Bio-functional nano-coatings on metallic biomaterials. Materials Science and Engineering: C 2015; 55: 227–251. doi: 10.1016/j.msec.2015.05.018

18. Chauhan S, Upadhyay LSB. Biosynthesis of iron oxide nanoparticles using plant derivatives of Lawsonia inermis (Henna) and its surface modification for biomedical application. Nanotechnology for Environmental Engineering 2019; 4(1): 1–10. doi: 10.1007/s41204-019-0055-5

19. Song C, Sun W, Xiao Y, Shi X. Ultrasmall iron oxide nanoparticles: Synthesis, surface modification, assembly, and biomedical applications. Drug Discovery Today 2019; 24(3): 835–844. doi: 10.1016/j.drudis.2019.01.001

20. Sung MK, Rho J, Choi IS, et al. Norepinephrine: Material-independent, multifunctional surface modification reagent. Journal of the American Chemical Society 2009; 131(37): 13224–13225. doi: 10.1021/ja905183k

21. Liao SC, Chang CT, Chen CY, et al. Functionalization of pure titanium MAO coatings by surface modifications for biomedical applications. Surface and Coatings Technology 2020; 394: 125812. doi: 10.1016/j.surfcoat.2020.125812

22. Quiñones R, Shoup D, Behnke G, et al. Study of perfluorophosphonic acid surface modifications on zinc oxide nanoparticles. Materials 2017; 10(12): 1363. doi: 10.3390/ma10121363

23. Tsai CH, Hung CH, Kuo CN, et al. Improved bioactivity of 3D printed porous titanium alloy scaffold with chitosan/magnesium-calcium silicate composite for orthopaedic applications. Materials 2019; 12(2): 203. doi: 10.3390/ma12020203

24. Guo L, Smeets R, Kluwe L, et al. Cytocompatibility of titanium, zirconia and modified PEEK after surface treatment using UV light or non-thermal plasma. International Journal of Molecular Sciences 2019; 20(22): 5596. doi: 10.3390/ijms20225596

25. Kaushik N, Nguyen LN, Kim JH, et al. Strategies for using polydopamine to induce biomineralization of hydroxyapatite on implant materials for bone tissue engineering. International Journal of Molecular Sciences 2020; 21(18): 6544. doi: 10.3390/ijms21186544

26. Park Y, Jung J, Chang M. Research progress on conducting polymer-based biomedical applications. Applied Sciences 2019; 9(6): 1070. doi: 10.3390/app9061070

27. Kirmanidou Y, Sidira M, Drosou ME, et al. New ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review. Biomed Research International 2016; 2016: 2908570. doi: 10.1155/2016/2908570

28. Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia 2019; 83: 37–54. doi: 10.1016/j.actbio.2018.10.036

29. Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics-and heavy metals-based titanium alloy surface modifications for local prosthetic joint infections. Antibiotics 2021; 10(10): 1270. doi: 10.3390/antibiotics10101270

30. Thakur A, Kaya S, Kumar A. Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys. Applied Sciences 2023; 13(2): 730. doi: 10.3390/app13020730

31. Thakur A, Sharma S, Ganjoo R, et al. Anti-corrosive potential of the sustainable corrosion inhibitors based on biomass waste: A review on preceding and perspective research. Journal of Physics: Conference Series 2022; 2267(1): 012079. doi: 10.1088/1742-6596/2267/1/012079

32. Thakur A, Kumar A, Sharma S, et al. Computational and experimental studies on the efficiency of Sonchus arvensis as green corrosion inhibitor for mild steel in 0.5M HCl solution. Materials Today: Proceedings 2022; 66(2): 609–621. doi: 10.1016/j.matpr.2022.06.479

33. Thakur A, Kaya S, Abousalem AS, Kumar A. Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment. Sustainable Chemistry and Pharmacy 2022; 29: 100785. doi: 10.1016/j.scp.2022.100785

34. Thakur A, Kumar A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. Science of the Total Environment 2022; 834: 155219. doi: 10.1016/j.scitotenv.2022.155219

35. Thakur A, Kumar A. Sustainable inhibitors for corrosion mitigation in aggressive corrosive media: A comprehensive study. Journal of Bio- and Tribo-Corrosion 2021; 7(2): 1–48. doi: 10.1007/s40735-021-00501-y

36. Parveen G, Bashir S, Thakur A, et al. Experimental and computational studies of imidazolium based ionic liquid 1-methyl-3-propylimidazolium iodide on mild steel corrosion in acidic solution. Materials Research Express 2020; 7(1): 016510. doi: 10.1088/2053-1591/ab5c6a

37. Thakur A, Kaya S, Abousalem AS, et al. Computational and experimental studies on the corrosion inhibition performance of an aerial extract of Cnicus Benedictus weed on the acidic corrosion of mild steel. Process Safety and Environmental Protection 2022; 161: 801–818. doi: 10.1016/j.psep.2022.03.082

38. Thakur A, Kumar A, Kaya S, et al. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings 2022; 12(10): 1459. doi: 10.3390/coatings12101459

39. Thakur A, Kumar A. Recent trends in nanostructured carbon-based electrochemical sensors for the detection and remediation of persistent toxic substances in real-time analysis. Materials Research Express 2023; 10(3): 034001. doi: 10.1088/2053-1591/acbd1a

40. Thakur A, Kaya S, Kumar A. Recent innovations in nano container-based self-healing coatings in the construction industry. Current Nanoscience 2022; 18(2): 203–216. doi: 10.2174/1573413717666210216120741

41. Dhonchak C, Agnihotri N, Kumar A. Computational insights in the spectrophotometrically 4H-chromen-4-one complex using DFT method. Biointerface Research in Applied Chemistry 2023; 13(4): 357. doi: 10.33263/BRIAC134.357

42. Bashir S, Thakur A, Lgaz H, et al. Computational and experimental studies on Phenylephrine as anti-corrosion substance of mild steel in acidic medium. Journal of Molecular Liquids 2019; 293: 111539. doi: 10.1016/j.molliq.2019.111539

43. Bashir S, Thakur A, Lgaz H, et al. Corrosion inhibition efficiency of bronopol on aluminium in 0.5M HCl solution: Insights from experimental and quantum chemical studies. Surfaces and Interfaces 2020; 20: 100542. doi: 10.1016/j.surfin.2020.100542

44. Bashir S, Thakur A, Lgaz H, et al. Corrosion inhibition performance of acarbose on mild steel corrosion in acidic medium: An experimental and computational study. Arabian Journal for Science and Engineering 2020; 45(6): 4773–4783. doi: 10.1007/s13369-020-04514-6

45. Tortorella S, Buratti VV, Maturi M, et al. Surface-modified nanocellulose for application in biomedical engineering and nanomedicine: A review. International Journal of Nanomedicine 2020; 15: 9909–9937. doi: 10.2147/IJN.S266103

46. Miranda I, Souza A, Sousa P, et al. Properties and applications of PDMS for biomedical engineering: A review. Journal of Functional Biomaterials 2022; 13(1): 2. doi: 10.3390/jfb13010002

47. Schweitzer L, Cunha A, Pereira T, et al. Preclinical in vitro assessment of submicron-scale laser surface texturing on Ti6AI4V. Materials 2020; 13(23): 5342. doi: 10.3390/ma13235342

48. Okazaki Y, Katsuda S. Biological safety evaluation and surface modification of biocompatible Ti–15Zr–4Nb alloy. Materials 2021; 14(4): 731. doi: 10.3390/ma14040731

49. Demetrescu I, Dumitriu C, Totea G, et al. Zwitterionic cysteine drug coating influence in functionalization of implantable Ti50Zr alloy for antibacterial, biocompatibility and stability properties. Pharmaceutics 2018; 10(4): 220. doi: 10.3390/pharmaceutics10040220

50. Li J, Zhou P, Attarilar S, Shi H. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants. Coatings 2021; 11(6): 647. doi: 10.3390/coatings11060647

51. Ravichandran R, Sundarrajan S, Venugopal JR, et al. Applications of conducting polymers and their issues in biomedical engineering. Journal of the Royal Society Interface 2010; 7: S559–S579. doi: 10.1098/rsif.2010.0120.focus

52. Yoshida S, Hagiwara K, Hasebe T, Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surface and Coatings Technology 2013; 233: 99–107. doi: 10.1016/j.surfcoat.2013.02.042

53. Kyzioł K, Kaczmarek Ł, Brzezinka G, Kyzioł A. Structure, characterization and cytotoxicity study on plasma surface modified Ti-6Al-4V and γ-TiAl alloys. Chemical Engineering Journal 2014; 240: 516–526. doi: 10.1016/j.cej.2013.10.091

54. Raval N, Kalyane D, Maheshwari R, Tekade RK. Surface modifications of biomaterials and their implication on biocompatibility. In: Tekade RK (editor). Biomaterials and Bionanotechnology. Academic Press; 2019. pp. 639–674.

55. Ananth KP, Suganya S, Mangalaraj D, et al. Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: An in vitro investigation. Materials Science and Engineering: C 2013; 33(7): 4160–4166. doi: 10.1016/j.msec.2013.06.010

56. Witkowska J, Tarnowski M, Choińska E, et al. Plasma modification of carbon coating produced by RF CVD on oxidized NiTi shape memory alloy under glow-discharge conditions. Materials 2021; 14(17): 4842. doi: 10.3390/ma14174842

57. Merenda A, Ligneris ED, Sears K, et al. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes. Scientific Reports 2016; 6: 31565. doi: 10.1038/srep31565

58. Baig Z, Mamat O, Mustapha M. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review. Critical Reviews in Solid State and Materials Sciences 2018; 43(1): 1–46. doi: 10.1080/10408436.2016.1243089

59. Joshi M, Bhattacharyya A. Nanotechnology: A new route to high performance functional textiles. Textile Progress 2011; 43(3): 155–233. doi: 10.1080/00405167.2011.570027

60. Bello D, Wardle BL, Yamamoto N, et al. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticle Research 2009; 11(1): 231–249. doi: 10.1007/s11051-008-9499-4

61. Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nature Neuroscience 2009; 12(1): 44–52. doi: 10.1038/nn.2234

62. Cope AP, Londei M, Chu NR, et al. Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. The Journal of Clinical Investigation 1994; 94(2): 749–760. doi: 10.1172/JCI117394

63. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007; 40(6): 1434–1446. doi: 10.1016/j.bone.2007.03.017

64. Jones R, Pollock HM, Cleaver JAS, Hodges CS. Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment. Langmuir 2002; 18(21): 8045–8055. doi: 10.1021/la0259196

65. Kim HW, Koh YH, Li LH, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 2004; 25(13): 2533–2538. doi: 10.1016/j.biomaterials.2003.09.041

66. Trivedi P, Gupta P, Srivastava S, et al. Characterization and in vitro biocompatibility study of Ti-Si-N nanocomposite coatings developed by using physical vapor deposition. Applied Surface Science 2014; 293: 143–150. doi: 10.1016/j.apsusc.2013.12.119

67. Yu LG, Khor KA, Li H, Cheang P. Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials 2003; 24(16): 2695–2705. doi: 10.1016/S0142-9612(03)00082-6

68. Kim HW, Kim HE, Knowles JC. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 2004; 25(17): 3351–3358. doi: 10.1016/j.biomaterials.2003.09.104



  • There are currently no refbacks.

License URL: