Carbenes trapping on Aluminum-Magnesium surface implanted with Silicon, Germanium, Tin: Promising of semiconductors by molecular modeling approach
Vol 7, Issue 1, 2024
(Abstract)
Abstract
Al-Mg surface doped silicon, germanium and tin is theoretically studied using first-principles density functional theory (DFT) at the CAM-B3LYP/EPR-III, LANL2DZ,6-31+G(d,p) level of theory to explore the chemical adsorption and corrosion inhibition of organic carbenes through coating process. The fluctuation of NQR is estimated the inhibiting role of pyridine and its derivatives (picoline, 3-picoline,4-picoline,2,4-lutidine) for (Si, Ge, Sn)-doped Al-Mg alloy nanosheet due to concerning nitrogen in the benzene ring of related heterocyclic compounds becoming close to the monolayer nanosurface of Al-Mg-X (X = Si, Ge, Sn) nanoalloys. The NMR spectroscopy remarks that (Si, Ge, Sn)-doped Al-Mg alloy nanosheet has maximum band wavelengths approximately between 10 ppm–2000 ppm accompanying the sharpest peaks for inhibitors → Al-Mg-X which are between 10 ppm–100 ppm. IR spectroscopy has exhibited that (Si, Ge, Sn)-doped Al-Mg alloy nanosheet with the fluctuation in the frequency of intra-atomic interaction leads us to the most influence in the vicinage atoms generated due to inter-atomic interaction. The maximum IR spectrum for complexes of [inhibitor → Al-Mg-X (X = Si, Ge, Sn)] is observed in the frequency range between 500 cm−1–3500 cm−1. This work exhibits that proper monitoring of the coating mechanism by Langmuir adsorption can illustrate inhibiting the aluminum nanoalloys corrosion through an investigation of their structural and thermodynamic properties. This work investigates the characteristics, band structure, and projected density of state (PDOS) of Al-Mg nanoalloy doped with Si, Ge, Sn elements for increasing the corrosion inhibition of the surface through adsorption of organic molecules of carbenes in the surface coatings process. This article can be helpful in a range of applications which uses Al-Mg alloy for the study of energy storage and adsorption of air pollution or water contamination. Many different approaches such as surface coatings, alloying and doping can be adopted to protect the surface.
Keywords
Full Text:
PDFReferences
1. He H, Yang T, Ren Y, et al. Experimental investigation on the formability of Al-Mg alloy 5052 sheet by tensile and cupping test. Materials 2022; 15(24): 8949. doi: 10.3390/ma15248949
2. Chen Y, Yang Y, Wang H, et al. Finite element analysis of fluid–structure interaction in a model of an L-type Mg alloy stent-stenosed coronary artery system. Metals 2022; 12(7): 1176. doi: 10.3390/met12071176
3. Bao G, Fan Q, Ge D, et al. In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomaterialia 2019; 97: 623–636. doi: 10.1016/j.actbio.2019.08.001
4. Alaneme KK, Kareem SA, Olajide JL, et al. Computational biomechanical and biodegradation integrity assessment of Mg-based biomedical devices for cardiovascular and orthopedic applications: A review. International Journal of Lightweight Materials and Manufacture 2022; 5(2): 251–266. doi: 10.1016/j.ijlmm.2022.02.003
5. Mollaamin F, Monajjemi M, Sakhaeinia H. Nano-metallic semiconductor towards the vibrational analysis and harmonic linear combination. Russian Journal of Physical Chemistry A 2022; 96(5): 1051–1061. doi: 10.1134/s0036024422050090
6. Hong Hue DT, Tran VK, Nguyen VL, et al. High strain-rate effect on microstructure evolution and plasticity of Aluminum 5052 alloy nano-multilayer: A molecular dynamics study. Vacuum 2022; 201: 111104. doi: 10.1016/j.vacuum.2022.111104
7. Liu Y, Liu Z, Zhou G, et al. Microstructures and properties of Al-Mg alloys manufactured by WAAM-CMT. Materials 2022; 15(15): 5460. doi: 10.3390/ma15155460
8. Ren Z, Zhao Y, Han G, et al. Laser-Arc hybrid cladding of Al-Mg alloy coating on AZ80 Mg alloy: Effect of laser beam oscillations amplitude. Materials 2022; 15(20): 7272. doi: 10.3390/ma15207272
9. Monajjemi M, Khaleghian M, Tadayonpour N, et al. The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study. Int. J. Nanosci. 2010; 9(5): 517–529. doi: 10.1142/S0219581X10007071
10. Tan J, Ramakrishna S. Applications of magnesium and its alloys: A review. Applied Sciences 2021; 11(15): 6861. doi: 10.3390/app11156861
11. Yang W, Jung YG, Kwak T, et al. Microstructure and mechanical properties of an Al-Mg-Si-Zr alloy processed by L-PBF and subsequent heat treatments. Materials 2022; 15(15): 5089. doi: 10.3390/ma15155089
12. Ali SA, Mazumder MAJ, Nazal MK, Al-Muallem HA. Assembly of succinic acid and isoxazolidine motifs in a single entity to mitigate CO2 corrosion of mild steel in saline media. Arabian Journal of Chemistry 2020; 13(1): 242–257. doi: 10.1016/j.arabjc.2017.04.005
13. Rometsch PA, Zhu Y, Wu X, Huang A. Review of high-strength Aluminium alloys for additive manufacturing by laser powder bed fusion. Materials & Design 2022; 219: 110779. doi: 10.1016/j.matdes.2022.110779
14. Dong Z, Xu M, Guo H, et al. Microstructural evolution and characterization of AlSi10Mg alloy manufactured by selective laser melting. Journal of Materials Research and Technology 2022; 17: 2343–2354. doi: 10.1016/j.jmrt.2022.01.129
15. Otani Y, Sasaki S. Effects of the addition of silicon to 7075 Aluminum alloy on microstructure, mechanical properties, and selective laser melting processability. Materials Science and Engineering: A 2020; 777: 139079. doi: 10.1016/j.msea.2020.139079
16. Pan W, Zhai Z, Liu Y, et al. Research on microstructure and cracking behavior of Al-6.2Zn-2Mg-xSc-xZr alloy fabricated by selective laser melting. Crystals 2022; 12(10): 1500. doi: 10.3390/cryst12101500
17. Dieringa H, StJohn D, Pérez Prado MT, Kainer KU. Latest developments in the field of Magnesium alloys and their applications. Frontiers in Materials 2021; 8. doi: 10.3389/fmats.2021.726297
18. Mollaamin F, Monajjemi M. Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO2, and NH3 adsorbing: A DFT study. Journal of Molecular Modeling 2023; 29(6): 170. doi: 10.1007/s00894-023-05567-8
19. Mollaamin F, Ilkhani A, Sakhaei N, et al. Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study. J. Comput. Theor. Nanosci. 2015; 12(10): 3148–3154. doi: 10.1166/jctn.2015.4092
20. Das AK. Recent trends in laser cladding and alloying on magnesium alloys: A review. Materials Today: Proceedings 2022; 51: 723–727. doi: 10.1016/j.matpr.2021.06.217
21. Yao XY, Tang JC, Zhou YH, et al. Selective laser melting of an Mg/Metallic Glass hybrid for significantly improving chemical and mechanical performances. Applied Surface Science 2022; 580: 152229. doi: 10.1016/j.apsusc.2021.152229
22. Vončina M, Nagode A, Medved J, et al. Homogenisation efficiency assessed with microstructure analysis and hardness measurements in the EN AW 2011 Aluminium alloy. Metals 2021; 11(8): 1211. doi: 10.3390/met11081211
23. Kumar A, Pandey C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and inconel 617 alloy: Mechanism, microstructure, and mechanical properties. Archives of Civil and Mechanical Engineering 2022; 22(1): 39. doi: 10.1007/s43452-021-00365-6
24. Xu Y, Zhang Z, Zhao P, et al. Effects of ESMT on microstructure and mechanical properties of Al-8Zn-2Mg-1.5Cu-0.15Sc-0.15Zr cast alloy in squeeze casting process. Crystals 2022; 12(7): 996. doi: 10.3390/cryst12070996
25. Jiang L, Zhang Z, Wang Y, et al. Effects of Sc microalloying on microstructure and properties of As-Extruded Al-5Mg alloy. Crystals 2022; 12(7): 939. doi: 10.3390/cryst12070939
26. Li S, Bai Y, Zhang Z, Jiang L. Effects of vacuum-stirring purification process on Al-6Mg alloy melt. Crystals 2022; 12(5): 675. doi: 10.3390/cryst12050675
27. Jiang L, Zhang Z, Bai Y, et al. Study on Sc microalloying and strengthening mechanism of Al-Mg alloy. Crystals 2022; 12(5): 673. doi: 10.3390/cryst12050673
28. Zhai Z, Pan W, Liang B, et al. Cracking behavior, microstructure and properties of selective laser melted Al-Mn-Mg-Sc-Zr alloy. Crystals 2022; 12(4): 565. doi: 10.3390/cryst12040565
29. Chen M, Bai Y, Zhang Z, Zhao H. The preparation of high-volume fraction SiC/Al composites with high thermal conductivity by vacuum pressure infiltration. Crystals 2021; 11(5): 515. doi: 10.3390/cryst11050515
30. Zhang F, Zhang J, Ni H, et al. Optimization of AlSi10MgMn alloy heat treatment process based on orthogonal test and grey relational analysis. Crystals 2021; 11(4): 385. doi: 10.3390/cryst11040385
31. Khaleghian M, Zahmatkesh M, Mollaamin F, et al. Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study. Fuller. Nanotub. Carbon Nanostructures 2011; 19(4): 251–261. doi: 10.1080/15363831003721757
32. Galyshev S. On the strength of the CF/Al-wire depending on the fabrication process parameters: Melt temperature, time, ultrasonic power, and thickness of carbon fiber coating. Metals 2021; 11(7): 1006. doi: 10.3390/met11071006
33. Mollaamin F. Features of parametric point nuclear magnetic resonance of metals implantation on boron nitride nanotube by density functional theory/electron paramagnetic resonance. Journal of Computational and Theoretical Nanoscience 2014; 11(11): 2393–2398. doi: 10.1166/jctn.2014.3653
34. Wang X, Chen Z, Ma T, et al. Evolution of primary and eutectic Si phase and mechanical properties of Al2O3/Al-20Si composites under high pressure. Crystals 2021; 11(4): 364. doi: 10.3390/cryst11040364
35. Zadeh MAA, Lari H, Kharghanian L, et al. Density functional theory study and anti-cancer properties of shyshaq plant: In view point of nano biotechnology. Journal of Computational and Theoretical Nanoscience 2015; 12(11): 4358–4367. doi: 10.1166/jctn.2015.4366
36. Zhao K, Gao T, Yang H, et al. Enhanced grain refinement and mechanical properties of a high–strength Al–Zn–Mg–Cu–Zr alloy induced by TiC nano–particles. Materials Science and Engineering: A 2021; 806: 140852. doi: 10.1016/j.msea.2021.140852
37. Tahan A, Mollaamin F, Monajjemi M. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russian Journal of Physical Chemistry A 2009; 83(4): 587–597. doi: 10.1134/s003602440904013x
38. Xiao H, Li Y, Geng J, et al. Effects of nano-sized TiB2 particles and Al3Zr dispersoids on microstructure and mechanical properties of Al-Zn-Mg-Cu based materials. Transactions of Nonferrous Metals Society of China 2021; 31(8): 2189–2207. doi: 10.1016/S1003-6326(21)65648-0
39. Khalili Hadad B, Mollaamin F, Monajjemi M, Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russ. Chem. Bulletin. 2011; 60: 238–241. doi: 10.1007/s11172-011-0039-5
40. Monajjemi M, Mollaamin F, Shojaei S, An overview on Coronaviruses family from past to Covid-19: Introduce some inhibitors as antiviruses from Gillan’s plants Biointerface. Res. Appl. Chem. 2020; 10(3): 5575–5585. doi: 10.33263/BRIAC103.575585
41. Louis H, Chukwuemeka K, Agwamba EC, et al. Molecular simulation of Cu, Ag, and Au-decorated Si-doped graphene quantum dots (Si@QD) nanostructured as sensors for SO2 trapping. Journal of Molecular Graphics and Modelling 2023; 124: 108551. doi: 10.1016/j.jmgm.2023.108551
42. Melamed Y, Maity N, Meshi L, Eliaz N. Electroplating of pure Aluminum from [HMIm][TFSI]–AlCl3 room-temperature ionic liquid. Coatings 2021; 11(11): 1414. doi: 10.3390/coatings11111414
43. Siddesh Kumar NM, Dhruthi, Pramod GK, et al. A critical review on heat treatment of Aluminium alloys. Materials Today: Proceedings 2022; 58: 71–79. doi: 10.1016/j.matpr.2021.12.586
44. Fang X, Li Y, Zheng Q, et al. Theoretical prediction of structural, mechanical, and thermophysical properties of the precipitates in 2xxx series Aluminum alloy. Metals 2022; 12(12): 2178. doi: 10.3390/met12122178
45. Mollaamin F, Monajjemi M, Salemi S, et al. A dielectric effect on normal mode analysis and symmetry of BNNT Nanotube. Fuller. Nanotub. Carbon Nanostructures 2011; 19(3): 182–196. doi: 10.1080/15363831003782932
46. Würger T, Feiler C, Vonbun-Feldbauer GB, et al. A first-principles analysis of the charge transfer in magnesium corrosion. Scientific Reports 2020; 10(1): 15006. doi: 10.1038/s41598-020-71694-4
47. Ma H, Chen LJ, Guo LQ, et al. First-principles calculation of Al-Cu-Mg alloy strengthening phase. Advanced Materials Research 2015; 1096: 109–113. doi: 10.4028/www.scientific.net/amr.1096.109
48. Zhou L, Su K, Wang Y, et al. First-principles study of the properties of Li, Al and Cd doped Mg alloys. Journal of Alloys and Compounds 2014; 596: 63–68. doi: 10.1016/j.jallcom.2014.01.199
49. Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nature Mater 2012; 11(8): 667–674. doi: 10.1038/nmat3354
50. Chen J, Schusteritsch G, Pickard CJ, et al. Two dimensional ice from first principles: Structures and phase transitions. Physical Review Letters 2016; 116(2): 025501. doi: 10.1103/physrevlett.116.025501
51. Louis H, Benjamin I, Iloanya AC, et al. Functionalized (–HCO, –OH, –NH2) Iridium-doped graphene (Ir@Gp) nanomaterials for enhanced delivery of Piroxicam: Insights from quantum chemical calculations. Journal of Molecular Liquids 2023; 383: 122068. doi: 10.1016/j.molliq.2023.122068
52. Oyo-Ita I, Louis H, Nsofor VC, et al. Studies on transition metals (Rh, Ir, Co) doped silicon carbide nanotubes (SiCNT) for the detection and adsorption of acrolein: Insight from DFT approach. Materials Science and Engineering: B 2023; 296: 116668. doi: 10.1016/j.mseb.2023.116668
53. Calle-Vallejo F, Martínez JI, García-Lastra JM, et al. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angewandte Chemie International Edition 2014; 53(32): 8316–8319. doi: 10.1002/anie.201402958
54. Akpe MA, Louis H, Gber TE, et al. Modeling of Cu, Ag, and Au-decorated Al12Se12 nanostructured as sensor materials for trapping of chlorpyrifos insecticide. Computational and Theoretical Chemistry 2023; 1226: 114218. doi: 10.1016/j.comptc.2023.114218
55. Greeley J, Nørskov JK. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochimica Acta 2007; 52(19): 5829–5836. doi: 10.1016/j.electacta.2007.02.082
56. Okon GA, Ogungbemiro FO, Louis H, et al. Single-atom transition metals (Rh, Ir, Co) doped silicon carbide nanotubes (SiCNT) as nonenzymatic nitrotyrosine (NTS) sensor: Insight from theoretical calculations. Computational and Theoretical Chemistry 2023; 1227: 114250. doi: 10.1016/j.comptc.2023.114250
57. Zhu X, Dong X, Blake P, Ji S. Improvement in as-cast strength of high pressure die-cast Al–Si–Cu–Mg alloys by synergistic effect of Q-Al5Cu2Mg8Si6 and θ-Al2Cu phases. Materials Science and Engineering: A 2021; 802: 140612. doi: 10.1016/j.msea.2020.140612
58. Liu Y, Wen JC, Zhang XY, Huang YC. A comparative study on heterogeneous nucleation and mechanical properties of the fcc-Al/L12-Al3M (M = Sc, Ti, V, Y, Zr, Nb) interface from first-principles calculations. Physical Chemistry Chemical Physics 2021; 23(8): 4718–4727. doi: 10.1039/d0cp05832g
59. Sun F, Zhang G, Liu H, et al. Effect of transition-elements substitution on mechanical properties and electronic structures of B2-AlCu compounds. Results in Physics 2021; 21: 103765. doi: 10.1016/j.rinp.2020.103765
60. Zhang S, Yi W, Zhong J, et al. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility. Materials 2022; 16(1): 306. doi: 10.3390/ma16010306
61. Yi W, Liu G, Gao J, Zhang L. Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques. Journal of Materials Informatics 2021; 1(2). doi: 10.20517/jmi.2021.10
62. Yi W, Liu G, Lu Z, et al. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning. Journal of Materials Science & Technology 2022; 112: 277–290. doi: 10.1016/j.jmst.2021.09.061
63. Chrominski W, Lewandowska M. Precipitation strengthening of Al-Mg-Si alloy subjected to multiple accumulative roll bonding combined with a heat treatment. Materials & Design 2022; 219: 110813. doi: 10.1016/j.matdes.2022.110813
64. Ji X, Zhang H, Luo S, et al. Microstructures and properties of Al–Mg–SI alloy overhead conductor by horizontal continuous casting and continuous extrusion forming process. Materials Science and Engineering: A 2016; 649: 128–134. doi: 10.1016/j.msea.2015.09.114
65. Sauvage X, Bobruk EV, Murashkin MY, et al. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Materialia 2015; 98: 355–366. doi: 10.1016/j.actamat.2015.07.039
66. Mei L, Chen XP, Huang GJ, Liu Q. Improvement of mechanical properties of a cryorolled Al-Mg-Si alloy through warm rolling and aging. Journal of Alloys and Compounds 2019; 777: 259–263. doi: 10.1016/j.jallcom.2018.11.012
67. Mollaamin F, Monajjemi M. Tribocorrosion framework of (Iron, Nickel, Zinc)-doped graphene nanosheet: New sights into sulfur dioxide and hydrogen sulfide removal using DFT/TD-DFT methods. Journal of Bio- and Tribo-Corrosion 2023; 9(3): 47. doi: 10.1007/s40735-023-00768-3
68. Murakami T, Matsuda K, Nagai T, et al. Aging behavior of Al-Mg-Ge alloys with different Mg2Ge contents. Advanced Materials Research 2011; 409: 63–66. doi: 10.4028/www.scientific.net/amr.409.63
69. Bjørge R, Nakashima PNH, Marioara CD, et al. Precipitates in an Al–Mg–Ge alloy studied by aberration-corrected scanning transmission electron microscopy. Acta Materialia 2011; 59(15): 6103–6109. doi: 10.1016/j.actamat.2011.06.021
70. Kurihara K, Lobzenko I, Tsuru T, Serizawa A. Interaction between solute atoms and vacancies in Al-Mg-X (X = Si, Ge) alloys. Journal of Japan Institute of Light Metals 2022; 72(7): 427–429. doi: 10.2464/jilm.72.427
71. Galyshev S, Orlov V, Atanov B, et al. The effect of Tin content on the strength of a carbon Fiber/Al-Sn-matrix composite wire. Metals 2021; 11(12): 2057. doi: 10.3390/met11122057
72. Raghavan V. Al-Mg-Sn (Aluminum-Magnesium-Tin). Journal of Phase Equilibria and Diffusion 2010; 32(1): 57–60. doi: 10.1007/s11669-010-9798-1
73. Mollaamin F, Monajjemi M. Doping of graphene nanostructure with Iron, Nickel and Zinc as selective detector for the toxic gas removal: A density functional theory study. C—Journal of Carbon Research 2023; 9(1): 20. doi: 10.3390/c9010020
74. Abdel Rehim SS, Hassan HH, Amin MA. Chronoamperometric studies of pitting corrosion of Al and (Al–Si) alloys by halide ions in neutral sulphate solutions. Corrosion Science 2004; 46(8): 1921–1938. doi: 10.1016/j.corsci.2003.10.016
75. Davis JR. Corrosion: Understanding the Basics. ASM International; 2000. doi: 10.31399/asm.tb.cub.9781627082501
76. Mollaamin F, Monajjemi M. Corrosion inhibiting by some organic heterocyclic inhibitors through langmuir adsorption mechanism on the Al-X (X = Mg/Ga/Si) alloy surface: A study of quantum three-layer method of CAM-DFT/ONIOM. Journal of Bio- and Tribo-Corrosion 2023; 9(2): 33. doi: 10.1007/s40735-023-00751-y
77. Karplus M. Development of multiscale models for complex chemical systems: From H+H2 to biomolecules (nobel lecture). Angewandte Chemie International Edition 2014; 53(38): 9992–10005. doi: 10.1002/anie.201403924
78. Levitt M. Birth and future of multiscale modeling for macromolecular systems (nobel lecture). Angewandte Chemie International Edition 2014; 53(38): 10006–10018. doi: 10.1002/anie.201403691
79. Warshel A. Multiscale modeling of biological functions: from enzymes to molecular machines (nobel lecture). Angewandte Chemie International Edition 2014; 53(38): 10020–10031. doi: 10.1002/anie.201403689
80. Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angewandte Chemie International Edition 2009; 48(7): 1198–1229. doi: 10.1002/anie.200802019
81. Senn HM, Thiel W. QM/MM methods for biological systems In: Reiher M (editor). Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations. Springer; 2007. Volume 268.
82. Shen AY, Wu SN, Chiu CT. Synthesis and cytotoxicity evaluation of some 8-hydroxyquinoline derivatives. Journal of Pharmacy and Pharmacology 1999; 51(5): 543–548. doi: 10.1211/0022357991772826
83. Luo M, Yao L, Wu Q, et al. A study on correlation between electronic structure and inhibition properties of five-membered dinitrogen heterocyclic compounds (Chinese). Journal of Chinese Society for Corrosion and protection 1996; 16(3): 195–200.
84. Mollaamin F, Shahriari S, Monajjemi M, Khalaj Z. Nanocluster of Aluminum lattice via organic inhibitors coating: A study of freundlich adsorption. Journal of Cluster Science 2022; 34(3): 1547–1562. doi: 10.1007/s10876-022-02335-1
85. Brandt F, Jacob CR. Systematic QM region construction in QM/MM calculations based on uncertainty quantification. Journal of Chemical Theory and Computation 2022; 18(4): 2584–2596. doi: 10.1021/acs.jctc.1c01093
86. Mashuga ME, Olasunkanmi LO, Ebenso EE. Experimental and theoretical investigation of the inhibitory effect of new pyridazine derivatives for the corrosion of mild steel in 1 M HCl. Journal of Molecular Structure 2017; 1136: 127–139. doi: 10.1016/j.molstruc.2017.02.002
87. Guimarães TAS, da Cunha JN, de Oliveira GA, et al. Nitrogenated derivatives of furfural as green corrosion inhibitors for mild steel in HCl solution. Journal of Materials Research and Technology 2020; 9(4): 7104–7122. doi: 10.1016/j.jmrt.2020.05.019
88. Mollaamin F, Monajjemi M. Application of DFT and TD-DFT on langmuir adsorption of nitrogen and sulfur heterocycle dopants on an Aluminum surface decorated with Magnesium and Silicon. Computation 2023; 11(6): 108. doi: 10.3390/computation11060108
89. Bakhshi K, Mollaamin F, Monajjemi M. Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA). Journal of Computational and Theoretical Nanoscience 2011; 8(4): 763–768. doi: 10.1166/jctn.2011.1750
90. Mollaamin F, Monajjemi M. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation 2022; 49(4): 365–376. doi: 10.1080/08927022.2022.2159996
91. Kohn W, Becke AD, Parr RG. Density functional theory of electronic structure. The Journal of Physical Chemistry 1996; 100(31): 12974–12980. doi: 10.1021/jp960669l
92. Ladeira ACQ, Ciminelli VST, Duarte HA, et al. Mechanism of anion retention from EXAFS and density functional calculations: arsenic (V) adsorbed on gibbsite. Geochimica et Cosmochimica Acta 2001; 65(8): 1211–1217. doi: 10.1016/S0016-7037(00)00581-0
93. Mollaamin F, Monajjemi M. Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective. Journal of Molecular Modeling 2023; 29(4): 119. doi: 10.1007/s00894-023-05526-3
94. Koch W, Holthausen MC. A Chemist’s Guide to Density Functional Theory. Wiley-VCH; 2001. doi: 10.1002/3527600043
95. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review 1964; 136: B864–B871. doi: 10.1103/physrev.136.b864
96. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review 1965; 140: A1133–A1138. doi: 10.1103/physrev.140.a1133
97. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993; 98(7): 5648–5652. doi: 10.1063/1.464913
98. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988; 37(2): 785–789. doi: 10.1103/physrevb.37.785
99. Mollaamin F, Monajjemi M. Electric and magnetic evaluation of Aluminum-Magnesium nanoalloy decorated with Germanium through heterocyclic carbenes adsorption: A density functional theory study. Russian Journal of Physical Chemistry B 2023; 17(3): 658–672. doi: 10.1134/s1990793123030223
100. Monajjemi M, Baie MT, Mollaamin F. Interaction between threonine and cadmium cation in [Cd(Thr)n]2+ (n = 1–3) complexes: Density functional calculations. Russian Chemical Bulletin 2010; 59(5): 886–889. doi: 10.1007/s11172-010-0181-5
101. Cramer CJ. Essentials of Computational Chemistry: Theories and Models, 2nd ed. Wiley; 2004.
102. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics 1980; 58(8): 1200–1211. doi: 10.1139/p80-159
103. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision C.01. Gaussian, Inc.; 2016.
104. Dennington R, Keith TA, Millam JM. GaussView, Version 6.06.16. Semichem Inc.; 2016.
105. Smith JAS. Nuclear quadrupole resonance spectroscopy. General principles. Journal of Chemical Education 1971; 48(1): 39. doi: 10.1021/ed048p39
106. Allen N. Appendix K: Nuclear quadrupole resonance. In: Jacqueline MG, Lockwood JR (editors). Alternatives for Landmine Detection. Rand Corporation; 2003.
107. Mollaamin F, Monajjemi M. Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method. Sensor Review 2023; 43(4): 266–279. doi: 10.1108/sr-03-2023-0040
108. Young HA, Freedman RD. Sears and Zemansky’s University Physics with Modern Physics, 13th ed. Addison-Wesley; 2011. p. 754.
109. Monajjemi M, Mollaamin F, Gholami MR, et al. Quantum chemical parameters of some organic corrosion inhibitors, pyridine, 2-Picoline 4-Picoline and 2,4-Lutidine, adsorption at Aluminum surface in hydrocholoric and nitric acids and comparison between two acidic media. Main Group Metal Chemistry 2003; 26(6): 349–361. doi: 10.1515/mgmc.2003.26.6.349
110. Heinz H, Vaia RA, Farmer BL, Naik RR. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials. The Journal of Physical Chemistry C 2008; 112(44): 17281–17290. doi: 10.1021/jp801931d
111. Mollaamin F, Monajjemi M. In Silico-DFT investigation of nanocluster alloys of Al-(Mg, Ge, Sn) coated by nitrogen heterocyclic carbenes as corrosion inhibitors. Journal of Cluster Science 2023; 34(6): 2901–2918. doi: 10.1007/s10876-023-02436-5
DOI: https://doi.org/10.24294/ace.v7i1.2284
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by-nc/4.0/