Biocatalysts for biomethanol production: Advancements and future prospects
Vol 7, Issue 1, 2024
VIEWS - 776 (Abstract) 450 (PDF)
Abstract
Biomethanol, a renewable and sustainable alternative to traditional fossil-fuel-derived methanol, has garnered considerable attention as a potential solution to mitigate greenhouse gas emissions and dependence on non-renewable resources. The utilization of biocatalysts in biomethanol production offers a promising avenue to achieve environmentally friendly and economically viable processes. Paper highlights the biocatalytic pathways involved in biomethanol synthesis. Particular emphasis is placed on microbial biocatalysts, such as methanogenic archaea and certain bacteria, which possess the unique capability of converting carbon dioxide and hydrogen into methanol through a series of enzymatic reactions. Additionally, enzyme-based systems derived from various microorganisms and genetically engineered organisms are also discussed as potential biocatalysts for biomethanol synthesis. Paper also delves into the current challenges and limitations faced in harnessing biocatalysts for biomethanol production. These challenges include substrate availability, low conversion rates, enzyme stability, and process scalability. Several strategies to address these issues are highlighted, including metabolic engineering, synthetic biology, and bioprocess optimization techniques. The advantages of utilizing biocatalysts for biomethanol production are outlined. Biocatalytic routes offer the advantage of operating under mild conditions, which reduces energy consumption and minimizes the production of unwanted by-products. Furthermore, the utilization of renewable feedstocks, such as carbon dioxide captured from industrial emissions or waste streams, enhances the sustainability of the process. The final section discusses future prospects and potential research directions in the field of biocatalytic biomethanol production. Advances in biotechnology, omics technologies, and computational modeling are poised to accelerate the discovery and optimization of novel biocatalysts, thereby unlocking the full potential of biomethanol as a sustainable fuel and chemical precursor. The use of biocatalysts for biomethanol production offers an attractive approach to establish a green and circular economy. With ongoing research and technological advancements, the field holds significant promise for reducing carbon emissions and transitioning towards a more sustainable energy landscape. However, to fully realize the potential of biocatalytic biomethanol production, interdisciplinary collaboration and concerted efforts are required to address existing challenges.
Keywords
Full Text:
PDFReferences
1. Nair LG, Agrawal K, Verma P. An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus 2022; 6: 100086. doi: 10. 1016/j.nexus.2022.100086
2. Sarkar O, Butti SK, Mohan SV. Acidogenic biorefinery: Food waste valorization to biogas and platform chemicals. In: Bhaskar T, Pandey A, Mohan SV, et al. (editors). Waste Biorefinery. Elsevier; 2018. pp. 203–218.
3. Tsegaye B, Jaiswal S, Jaiswal AK. Food waste biorefinery: Pathway towards circular bioeconomy. Foods 2021; 10(6): 1174. doi: 10.3390/foods10061174
4. Oh SH, Hwang IY, Lee OK, et al. Development and optimization of the biological conversion of ethane to ethanol using whole-cell methanotrophs possessing methane monooxygenase. Molecules 2019; 24(3): 591. doi: 10.3390/molecules24030591
5. Lee OK, Hur DH, Nguyen DTN, Lee EY. Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuels Bioproduct and Biorefinery 2016; 10(6): 848–863. doi: 10.1002/bbb.1678
6. Nizami M, Slamet, Purwanto WW, Solar PV based power-to-methanol via direct CO2 hydrogenation and H2O electrolysis: Techno-economic and environmental assessment. Journal of CO2 Utilization 2022; 65: 102253. doi: 10.1016/j.jcou.2022.102253
7. Hwang IY, Lee SH, Choi YS, et al. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. Journal Microbiology and Biotechnology 2014; 24(12): 1597–1605. doi: 10.4014/jmb.1407.07070
8. Shoji O, Watanabe Y, Monooxygenation of non-native substrates catalysed by bacterial cytochrome P450s facilitated by decoy molecules. Chemistry Letters 2016; 46(3): 278–288. doi: 10.1246/cl.160963
9. Patel SKS, Mardina P, Kim SY, et al. Biological methanol production by a type II methanotroph methylocystis bryophila. Journal Microbiology and Biotechnology 2016; 26(4): 717–724. doi: 10.4014/jmb.1601.01013
10. Schakel W, Oreggioni G, Singh B, Strømman A, Ramírez A. Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether. Journal of CO2 Utilization 2016; 16: 138–149. doi: 10.1016/j.jcou.2016.06.005
11. Leonzio G. State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO2 Utilization 2018; 27: 326–354. doi: 10.1016/j.jcou.2018.08.005
12. Luu MT, Milani D, AbbasA. Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. Journal of Cleaner Production 2016; 112: 3540–3554. doi: 10.1016/j.jclepro.2015.10.119
13. Moioli E, Wötzel A, Schildhauer T. Feasibility assessment of small-scale methanol production via power-to-X. Journal of Cleaner Production 2022; 359: 132071. doi: 10.1016/j.jclepro.2022.132071
14. Nash M, Mullett G, Ma X, et al. Methanol as a marine bunker fuel. Available online: https://chemicalmarketanalytics.com/blog/methanol-market-outlook-2/ (accessed on 6 November 2023).
15. Adil A, Rao L. Methanol production from biomass: Analysis and optimization. Materials Today: Proceedings 2022; 57: 1770–1775. doi: 10.1016/j. matpr.2021.12.450
16. Adil A, Prasad B, Rao L. Methanol generation from bio-syngas: Experimental analysis and modeling studies. Environmental, Development and Sustainability 2023. doi: 10.1007/s10668-023-03541-1
17. Shamsul NS, Kamarudin SK, Rahman NA, Kofli NT. An overview on the production of bio-methanol as potential renewable energy. Renewable and Sustainable Energy Reviews 2014; 33: 578–588. doi: 10.1016/j.rser.2014.02.024
18. Sandeep K, Dasappa S. Oxy-steam gasification of biomass for hydrogen rich syngas production using downdraft reactor configuration. International Journal of Energy Research 2014; 38(2): 174–188. doi: 10.1002/er.3019
19. Arnaiz del Pozo C, Cloete S, Jiménez Álvaro Á. Carbon-negative hydrogen: Exploring the techno-economic potential of biomass co-gasification with CO2 capture. Energy Conversion and Management 2021; 247: 114712. doi: 10.1016/j.enconman.2021.114712
20. Samiee L, GhasemiKafrudi E. Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/Zno/Al2O3 catalyst. Reaction Kinetics Mechanisms and Catalysis 2021; 133(2): 801–823. doi: 10.1007/s11144-021-02045-1
21. Poluzzi A, Guandalini G, Romano MC. Flexible methanol and hydrogen production from biomass gasification with negative emissions. Sustainable Energy & Fuels 2022; 6(16): 3830–3851. doi: 10.1039/d2se00661h
22. Mota N, Guil-Lopez R, Pawelec BG, et al. Highly active Cu/Zno–Al catalyst for methanol synthesis: Effect of aging on its structure and activity. RSC Advances 2018; 8(37): 20619–20629. doi: 10.1039/c8ra03291b
23. Kumar SS, Himabindu V. Hydrogen production by PEM water electrolysis—A review. Materials Science for Energy Technologies 2019; 2(3): 442–454. doi: 10.1016/j.mset.2019.03.002
24. Bos MJ, Kersten SRA, Brilman DWF. Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Applied Energy 2020; 264: 114672. doi: 10.1016/j.apenergy.2020.114672
25. Mujeebu MA. Hydrogen and syngas production by superadiabatic combustion—A review. Applied Energy 2016; 173: 210–224. doi: 10.1016/j.apenergy.2016.04.018
26. Ju H, Giddey S, Badwal SPS. The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis. Electrochimica Acta 2017; 229: 39–47. doi: 10.1016/j.electacta.2017.01.106
27. Palanisamy G, Oh TH, Thangarasu S. Modified cellulose proton-exchange membranes for direct methanol fuel cells. Polymers 2023; 15(3): 659. doi: 10.3390/poly m15030659
28. Hibino T, Kobayashi K, Nagao M, et al. Alternating current electrolysis for individual synthesis of methanol and ethane from methane in a thermo-electrochemical cell. ACS Catalysis 2023; 13(13): 8890–8901. doi: 10.1021/acscatal.3c01333
29. Do TN, Kim J. Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy. Journal of CO2 Utilization 2019; 33: 461–472. doi: 10.1016/j.jcou.2019.07.003
30. Jin Z, Wang L, Zuidema E, et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020; 367: 193–197. doi: 10.1126/scien ce.aaw1108
31. Bjorck EC, Dobson DP, Pandhal J. Biotechnological conversion of methane to methanol: Evaluation of progress and potential. AIMS Bioengineering 2018; 5(1): 1–38. doi: 10.3934/bioeng.2018.1.1
32. Meng X, Cui X, Rajan NP, et al. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chemistry 2019; 5(9): 2296–2325. doi: 10.1016/j.chempr.2019.05.008
33. Ravi M, Ranocchiari M, van Bokhoven JA. The direct catalytic oxidation of methane to methanol—A critical assessment. Angewandte Chemie International Edition 2017; 56(52): 16464–16483. doi: 10.1002/anie.201702550
34. de Souza RFB, Florio DZ, Antolini E, Neto AO. Partial methane oxidation in fuel cell-type reactors for co-generation of energy and chemicals: A short review. Catalysts 2022; 12(2): 217. doi: 10.3390/catal12020217
35. Hibino T, Kobayashi K, Ito M, et al. Direct electrolysis of waste newspaper for sustainable hydrogen production: An oxygen-functionalized porous carbon anode. Applied Catalysis 2018; 231: 191–199. doi: 10.1016/j.apcatb.2018.03.021
36. Xu N, Coco CA, Wang Y, et al. Electro-conversion of methane to alcohols on “capsule-like” binary metal oxide catalysts. Applied Catalysis 2021; 282: 119572. doi: 10.1016/j.apcatb.2020.119572
37. Haider MH, Dummer NF, Knight DW, et al. Efficient green methanol synthesis from glycerol. Nature Chemistry 2015; 7(12): 1028–1032. doi: 10.1038/nchem.2345
38. Wu CT, Yu KMK, Liao F, et al. A non-syn-gas catalytic route to methanol production. Nature Communication 2012; 3(1): 1050. doi: 10.1038/ncomms2053
39. Braden DJ, Henao CA, Heltzel J, et al. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chemistry 2011; 13(7): 1755–1765. doi: 10.1039/c1gc15047b
40. Wang M, Liu M, Lu J, Wang F. Photo splitting of bio-polyols and sugars to methanol and syngas. Nature Communication 2020; 11(1): 1083. doi: 10.1038/s41467-020-14915-8
41. Shen K, Kumari S, Huang YC, et al. Electrochemical oxidation of methane to methanol on electrodeposited transition metal oxides. Journal of the American Chemical Society 2023; 145(12): 6927–6943. doi: 10.1021/jacs.3c00441
42. Arnarson L, Schmidt PS, Pandey M, et al. Fundamental limitation of electrocatalytic methane conversion to methanol. Physical Chemistry Chemical Physics 2018; 20(16): 11152–11159. doi: 10.1039/C8CP01476K
43. Gautam P, Neha, Upadhyay SN, Dubey SK. Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. Fuel 2020; 273: 117783. doi: 10.1016/j.fuel.2020.117783
44. Sikarwar VS, Zhao M, Fennell PS, et al. Progress in biofuel production from gasification. Progress in Energy and Combustion Science 2017; 61: 189–248. doi: 10.1016/j.pecs.2017.04.001
45. Kumabe K, Fujimoto S, Yanagida T, Ogata M, Fukuda T, Yabe A, et al. Environmental and economic analysis of methanol production process via biomass gasification. Fuel 2008; 87(7): 1422–1427. doi: 10.1016/j.fuel.2007.06.008
46. Sun H, Wang W, Koo KP. The practical implementation of methanol as a clean and efficient alternative fuel for automotive vehicles. International Journal of Engine Research 2019; 20(3): 350–358. doi: 10.1177/1468087417752951
47. Raheem A, Wan Azlina WAKG, Taufiq-Yap YH, et al. Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Review 2015; 49: 990–999. doi: 10.1016/j.rser.2015.04.186
48. Su Z, Ge X, Zhang W, et al. Methanol production from biogas with a thermotolerant methanotrophic consortium isolated from an anaerobic digestion system. Energy and Fuels 2017; 31(3): 2970–2975. doi: 10.1021/acs.energyfuels.6b03471
49. Patinvoh RJ, Osadolor OA, Chandolias K, et al. Innovative pretreatment strategies for biogas production. Bioresource Technology 2017; 224: 13–24. doi: 10.1016/j.biortech.2016.11.083
50. Muñoz R, Meier L, Diaz I, Jeison D. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Reviews in Environmental Science and Bio/Technology 2015; 14(4): 727–759. doi: 10.1007/s11157-015-9379-1
51. Su YC, Sathyamoorthy S, Chandran K. Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process. Bioresource Technology 2019; 279: 101–107. doi: 10.1016/j.biortech.2019.01.092
52. Bhardwaj Y, Reddy B, Dubey SK. Temporal shift in methanotrophic community and methane oxidation potential in forest soil of dry tropics: High throughput metagenomic approach. Biology and Fertility of Soils 2020; 56(6): 859–867. doi: 10.1007/s00374-020-01444-1
53. Lattner JR, Harold MP. Autothermal reforming of methanol: Experiments and modelling. Catalysis Today 2007; 120(1): 78–89. doi: 10.1016/j.cattod.2006.07.005
54. Gao F, Zhan H, Zeng ZY, A methanol autothermal reforming system for the enhanced hydrogen production: Process simulation and thermodynamic optimization. International Journal of Hydrogen Energy 2023; 48(5): 1758–1772. doi: 10.1016/j.ijhydene. 2022.10.067
55. Herdem MS, Sinaki MY, Farhad S, Hamdullahpur F. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems. International Journal Energy Research 2019; 43(10): 5076–5105. doi: 10.1002/er.4440
56. Chen WH, Su YQ, Lin BJ, et al. Hydrogen production from partial oxidation and autothermal reforming of methanol from a cold start in sprays. Fuel 2021; 287: 119638. doi: 10.1016/j.fuel.2020.119638
57. Iruretagoyena D, Hellgardt K, Chadwick D. Towards autothermal hydrogen production by sorption-enhanced water gas shift and methanol reforming: A thermodynamic analysis. Journal of Hydrogen Energy 2018; 43(9): 4211–4222. doi: 10.1016/j.ijhydene.2018.01.043
58. Marlin DS, Sarron E, Sigurbjörnsson Ó. Process advantages of direct CO2 to methanol synthesis. Frontier Chemistry 2018; 6: 446. doi: 10.3389/fchem.2018.00446.
59. Kiss AA, Landaeta FSJ, Ferreira ICA. Towards energy efficient distillation technologies–making the right choice. Energy 2012; 47: 531–542. doi: 10.1016/j.energy.2012.09.038
60. Rahman FA, Aziz MMA, Saidur R, et al. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renewable and Sustainable Energy Review 2017; 71: 112–126. doi: 10.1016/j.rser.2017.01.011
61. Ay S, Ozdemir M, Melikoglu M. Effects of metal promotion on the performance, catalytic activity, selectivity and deactivation rates of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Chemical Engineering Research and Design 2021; 175: 146–160. doi: 10.1016/j.cherd.2021.08.039
62. Behrens M. Coprecipitation: An excellent tool for the synthesis of supported metal catalysts. From the understanding of the well-known recipes to new materials. Catalysis Today 2015; 246: 46–54. doi: 10.1016/j.cattod.2014.07.050
63. Bhardwaj A, Ahluwalia AS, Pant KK, Upadhyayula S. A principal component analysis assisted machine learning modeling and validation of methanol formation over Cu-based catalysts in direct CO2 hydrogenation. Separation and Purification Technology 2023; 324: 124576. doi: 10.1016/j.seppur.2023.124576
64. Etim UJ, Song Y, Zhong Z. Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media. Frontiers in Energy Research 2020; 8: 545431. doi: 10.3389/fenrg.2020.545431
65. Zheng H, Narkhede N, Han L, et al. Methanol synthesis from CO2: A DFT investigation on Zn-promoted Cu catalyst. Research on Chemical Intermediates 2020; 46(3): 1749–1769. doi: 10.1007/s11164-019-04061-2
66. Simanungkalit SP, Jones I, Okoye CO, et al. A preliminary attempt of direct methanol synthesis from biomass pyrolysis syngas over Cu/ZnO/Al2O3 catalysts. Biomass and Bioenergy 2023; 174: 106850. doi: 10.1016/j.biombioe.2023.106850
67. Zhang F, Zhang Y, Yuan L, et al. Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods. Molecular Catalysis 2017; 441: 190–198. doi: 10.1016/j.mcat.2017.08.015
68. Yang B, Liu C, Halder A, et al. Copper cluster size effect in methanol synthesis from CO2. Journal of Physical Chemistry C 2017; 121(19): 10406–10412. doi: 10.1021/acs.jpcc.7b01835
69. Wang G, Chen L, Sun Y, et al. Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: Effect of carbon surface chemistry. RSC Advances 2015; 5(56): 45320–45330. doi: 10.1039/c5ra04774a
70. Studt F, Behrens M, Kunkes EL, et al. The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 2015; 7(7): 1105–1111. doi: 10.1002/cctc.201500123
71. e Silva MPG da C, Miranda JC de C. Energy efficiency of thermochemical syngas-to-ethanol production plants. SN Applied Sciences 2021; 3(5): 534. doi: 10.1007/s42452-021-04526-3
72. Fózer D, Tóth AJ, Varbanov PS, et al. Sustainability assessment of biomethanol production via hydrothermal gasification supported by artificial neural network. Journal of Cleaner Production 2021; 318: 128606. doi: 10.1016/j.jc lepro.2021.128606
73. Hur DH, Na J, Lee EY. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. Chemical Technology & Biotechnology 2017; 92(2): 311–318. doi: 10.1002/jctb.5007
74. Priyadarsini A, Singh R, Barbora L, et al. Methanotroph detection and bioconversion of methane to methanol by enriched microbial consortium from rice field soil. Bioresource Technology Reports 2023; 22: 101410. doi: 10.1016/j.biteb.2023.101410
75. Bak SY, Kang SG, Choi KH, et al. Phase-transfer biocatalytic methane-to-methanol conversion using the spontaneous phase-separable membrane μCSTR. Journal of Industrial and Engineering Chemistry 2022; 111: 389–397. doi: 10.1016/j.jiec.2022.04.021
76. Fergala A, AlSayed A, Eldyasti A. Utilization of Polyhydroxybutyrate (PHB) as intracellular reducing power for methanol production to alleviate the reliance on external energy sources by Methylocystis hirsute. Journal of Environmental Chemical Engineering 2021; 9(4): 105314. doi: 10.1016/j.jece.2021.105314
77. Baba T, Miyaji A. Application of biocatalysts for the production of methanol from methane. Catalysis and the Mechanism of Methane Conversion to Chemicals. Springer; 2020.
78. Ito H, Kondo R, Yoshimori K, Kamachi T. Methane hydroxylation with water as an electron donor under light irradiation in the presence of reconstituted membranes containing both photosystem II and a methane monooxygenase. ChemBioChem 2018; 19(20): 2152–2155. doi: 10.1002/cbic.201800324
79. Xin JY, Zhang YX, Zhang S, et al. Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011. Journal of Basic Microbiology 2007; 47(5): 426–435. doi: 10.1002/jobm.200710313
80. Hirayama H, Suzuki Y, Abe M, et al. Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. International Journal of Systematic and Evolutionary Microbiology 2011; 61(11): 2646–2653. doi: 10.1099/ijs.0.028092-0
81. Hirayama H, Abe M, Miyazaki M, et al. Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 2014; 64(Pt 3): 989–999. doi: 10.1099/ijs.0.058172-0
82. Han JS, Ahn CM, Mahanty B, Kim CG. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Applied Biochemistry and Biotechnology 2013; 171(6): 1487–1499. doi: 10.1007/s12010-013-0410-0
83. Kulkarni PP, Khonde VK, Deshpande MS, et al. Selection of methanotrophic platform for methanol production using methane and biogas. Journal of Bioscience and Bioengineering 2021; 5(5): 460–468. doi: 10.1016/j.jbiosc.2021.07.007
84. Patel SKS, Kondaveeti S, Otari SV, et al. Repeated batch methanol production from a simulated biogas mixture using immobilized methylocystis bryophila. Energy 2018; 145: 477–485. doi: 10.1016/j.energy.2017.12.142
85. Jeong SY, Kim TG. Development of a novel methanotrophic process with the helper micro-organism Hyphomicrobium sp. NM3. Journal Applied Microbiology 2019; 126(2): 534–544. doi: 10.1111/jam.14140
86. Barros-Rodríguez A, García-Gálvez C, Pacheco P, et al. Isolation of methane enriched bacterial communities and application as wheat biofertilizer under drought conditions: An environmental contribution. Plants 2023; 12(13): 2487. doi: 10.3390/plants12132487
87. Zhou Y, Zhang R, Tian K, et al. Characteristics of the methanotroph used in coalbed methane emission reduction: Methane oxidation efficiency and coal wettability. Fuel 2023; 349: 128596. doi: 10.1016/j.fuel.2023.128596
88. Jeong SY, Kim TG. Determination of methanogenesis by nutrient availability via regulating the relative fitness of methanogens in anaerobic digestion. Science of the Total Environment 2022; 838: 156002. doi: 10.1016/j.scitotenv.2022.156002
89. do Valle Gomes MZ, Masdeu G, Eiring P, et al. Improved biocatalytic cascade conversion of CO2 to methanol by enzymes Co-immobilized in tailored siliceous mesostructured cellular foams. Catalysis Science & Technology 2021; 11(21): 6952–6959. doi: 10.1039/d1cy01354h
90. Pani A, Shirkole SS, Mujumdar AS. Importance of renewable energy in the fight against global climate change. Drying Technology 2022; 40(13): 2581–2582. doi: 10.1080/07373937.2022.2119324
91. Akpahou R, Odoi-Yorke F. A multicriteria decision-making approach for prioritizing renewable energy resources for sustainable electricity generation in Benin. Cogent Engineering 2023; 10(1): 2204553. doi: 10.1080/23311916.2023.2204553
92. Jia X, Sun K, Wang J, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst. Journal of Energy Chemistry 2020; 50: 409–415. doi: 10.1016/j.jechem.2020.03.083
93. Ye J, Ge Q, Liu C. Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd–In/SiO2 catalyst. Chemical Engineering Science 2015; 135: 193–201. doi: 10.1016/j.ces.2015.04.034
94. Panda D, Sharma S, Gangawane KM. Synthesis of novel biocatalyst from organic waste protonated with acid treatment for hydrogen production. International Journal of Hydrogen Energy 2023; 48(63): 24242–24254. doi: 10.1016/j.ijhydene.2023.03.117
95. Saka C. Efficient and durable H2 production from NaBH4 methanolysis using N doped hybrid g-C3N4-SiO2 composites with ammonia as a nitrogen source. Fuel 2022; 324: 124594. doi: 10.1016/j.fuel.2022.124594
96. Tada S, Watanabe F, Kiyota K, et al. Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. Journal Catalysis 2017; 351: 107–118. doi: 10.1016/j.jcat.2017.04.021
97. Meyer JJ, Tan P, Apfelbacher A, et al. Modeling of a methanol synthesis reactor for storage of renewable energy and conversion of CO2—Comparison of two kinetic models. Chemical Engineering and Technology 2016; 39(2): 233–245. doi: 10.1002/ceat.201500084
98. Xu X, Shuai K, Xu B. Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen. Catalysts 2017; 7(6): 183. doi: 10.3390/catal7060183
99. Samimi F, Rahimpour MR, Shariati A. Development of an efficient methanol production process for direct CO2 hydrogenation over a Cu/ZnO/Al2O3 catalyst. Catalysts 2017; 7(11): 332. doi: 10.3390/catal7110332
100. Romero-Rivera A, Garcia-Borràs M, Osuna S. Computational tools for the evaluation of laboratory-engineered biocatalysts. Chemical Communications 2017; 53(2): 284–297. doi: 10.1039/c6cc06055b
101. Lovelock SL, Crawshaw R, Basler S, et al. The road to fully programmable protein catalysis. Nature 2022; 606(7912): 49–58. doi: 10.1038/s41586-022-04456-z
102. Zhang Z, Long M, Zheng N, et al. Inside out computational redesign of cavities for improving thermostability and catalytic activity of Rhizomucor Miehei lipase. Applied and Environmental Microbiology 2023; 89(3): e0217222. doi: 10.1128/aem.02172-22
103. Delgado‐Arciniega E, Wijma HJ, Hummel C, Janssen DB. Computationally supported inversion of ketoreductase stereoselectivity. ChemBioChem 2023; 24(9): e202300032. doi: 10.1002/cbi c.202300032
104. Cui Y, Sun J, Wu B, Computational enzyme redesign: Large jumps in function. Trends in Chemistry 2022; 4(5): 409–419. doi: 10.1016/j.trechm.2022.03.001
105. Doble MV, Obrecht L, Joosten HJ, et al. Engineering thermostability in artificial metalloenzymes to increase catalytic activity. ACS Catalysis 2021; 11(6): 3620–3627. doi: 10.1021/acscatal.0c05413
106. Dahiyat BI, Mayo SL. Protein design automation. Protein Science 1996; 5(5): 895–903. doi: 10.1002/pro.5560050511
107. Hellinga HW, Richards FM. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. Journal of Molecular Biology 1991; 222(3): 763–785. doi: 10.1016/0022-2836(91)90510-d
108. Dahiyat BI, Mayo SL. De novo protein design: Fully automated sequence selection. Science 1997; 278(5335): 82–87. doi: 10.1126/science.278.5335.82
109. Kosuri P, Altheimer BD, Dai M, et al. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature 2019; 572(7767): 136–140. doi: 10.1038/s41586-019-1397-7
110. Leman JK, Künze G. Recent advances in NMR protein structure prediction with ROSETTA. International Journal of Molecular Sciences 2023; 24(9): 7835. doi: 10.3390/ijms24097835
111. Richter F, Leaver-Fay A, Khare SD, et al. De novo enzyme design using Rosetta3. PLoS One 2011; 6(5): e19230. doi: 10.1371/journal.pone.0019230
112. Kiss G, Röthlisberger D, Baker D, Houk KN. Evaluation and ranking of enzyme designs. Protein Science 2010; 19(9): 1760–1773. doi: 10.1002/pro.462
113. Ashworth MA, Bombino E, de Jong RM, et al. Computation-aided engineering of cytochrome P450 for the production of pravastatin. ACS Catalysis 2022; 12(24): 15028–15044. doi: 10.1021/acscatal.2c03974
114. Öner A, Çelebi‐Ölçüm N. Rapid computational evaluation of small‐molecule hydrolase mimics for preorganized H‐bond networks. International Journal of Quantum Chemistry 2020; 121(2). doi: 10.1002/qua.26423
115. Pen N, Soussan L, Belleville MP, et al. Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor. Biotechnology and Bioprocess E 2016; 21(2): 283–293. doi: 10.1007/s12257-015-0762-0
116. Singh R, Ryu J, Kim SW. Microbial consortia including methanotrophs: Some benefits of living together. Journal of Microbiology 2019; 57(11): 939–952. doi: 10.1007/s12275-019-9328-8
117. Bodelier PLE, Pérez G, Veraart AJ, Krause SMB. Methanotroph ecology, environmental distribution and functioning. In: Lee EY (editors). Methanotrophs. Springer; 2019. pp. 1–38.
118. Balasubramanian R, Rosenzweig AC. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Accounts of Chemical Research 2007; 40(7): 573–580. doi: 10.1021/ar700004s
119. Duan C, Luo M, Xing X. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresource Technology 2011; 102(15): 7349–7353. doi: 10.1016/j.biortech.2011.04.096
120. Sahoo KK, Datta S, Goswami G, Das D. Two-stage integrated process for bio-methanol production coupled with methane and carbon dioxide sequestration: Kinetic modelling and experimental validation. Journal of Environmental Management 2022; 301: 113927. doi: 10.1016/j.jenvman.2021.113927
121. Patel SKS, Selvaraj C, Mardina P, et al. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Applied Energy 2016; 171: 383–391. doi: 10.1016/j.apenergy.2016.03.022
122. Hou R, Zhang N, Yang C, et al. A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methanol synthesis unit. Energy 2023; 270: 126842. doi: 10.1016/j.energy.2023.126842
123. Bi W, Tang Y, Li X, et al. One-step direct conversion of methane to methanol with water in non-thermal plasma. Communication Chemistry 2022; 5(1): 124. doi: 10.1038/s42004-022-00735-y
124. Deka TJ, Osman AI, Baruah DC, Rooney DW. Methanol fuel production, utilization, and techno-economy: A review. Environmental Chemistry Letter 2022; 20(6): 3525–3554. doi: 10.1007/s10311-022-01485-y
125. Arteaga-Pérez LE, Gómez-Cápiro O, Karelovic A, Jiménez R. A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: Standalone vs Integrated topologies. Chemical Engineering Journal 2016; 286: 663–678. doi: 10.1016/j.cej.2015.11.005
126. Akhoondi A, Osman AI, Eslami AA. Direct catalytic production of dimethyl ether from CO and CO2: A review. Synthesis and Sintering 2021; 1(2): 105–120. doi: 10.53063/synsint.2021.1229
127. Kim H, Byun M, Lee B, Lim H. Carbon-neutral methanol synthesis as carbon dioxide utilization at different scales: Economic and environmental perspectives. Energy Conversion and Management 2022; 252: 115119.
128. Zhang Q, Chen H, Li B, et al. A novel system integrating water electrolysis and supercritical CO2 cycle for biomass to methanol. Applied Thermal Engineering 2023; 225: 120234. doi: 10.1016/j.applthermaleng.2023.120234
129. Fózer D, Volanti M, Passarini F, et al. Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification. Applied Energy 2020; 280: 115923. doi: 10.1016/j.apenergy.2020.115923
130. Chen Q, Gu Y, Tang Z, Sun Y. Comparative environmental and economic performance of solar energy integrated methanol production systems in China. Energy Conversion and. Management 2019; 187: 63–75. doi: 10.1016/j.enconman.2019.03.013
131. Hennig M, Haase M. Techno-economic analysis of hydrogen enhanced methanol to gasoline process from biomass-derived synthesis gas. Fuel Processes and Technology 2021; 216: 106776. doi: 10.1016/j.fuproc.2021.106776
132. Woolf D, Lehmann J, Lee DR. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nature Communications 2016; 7: 13160. doi: 10.1038/ncomms13160
133. Klein D, Bauer N, Bodirsky B, et al. Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model. Energy Procedia 2011; 4: 2933–2940. doi: 10.1016/j.egypro.2011.02.201
134. Bai Z, Liu Q, Gong L, Lei J. Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation. Applied Energy 2019; 243: 91–101. doi: 10.1016/j.apenergy.2019.03.132
135. Adekoya D, Tahir M, Amin NAS. Recent trends in photocatalytic materials for reduction of carbon dioxide to methanol. Renewable and Sustainable Energy Reviews 2019; 116: 109389. doi: 10.1016/j.rser.2019.109389
136. AlNouss A, McKay G, Al-Ansari T. A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products. Energy Conversion and Management 2019; 196: 664–676. doi: 10.1016/j.enconman.2019.06.019
137. Yao Z, You S, Ge T, Wang CH. Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Applied Energy 2018; 209: 43–55. doi: 10.1016/j.apenergy.2017.10.077
138. Gautam P, Neha, Upadhyay SN, Dubey SK. Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. Fuel 2020; 273: 117783. doi: 10.1016/j.fuel.2020.117783
139. Sheets JP, Lawson K, Ge X, et al. Development and evaluation of a trickle bed bioreactor for enhanced mass transfer and methanol production from biogas. Biochemical Engineering Journal 2017; 122: 103–114. doi: 10.1016/j.bej.2017.03.006
140. Sheets JP, Ge X, Li YF, et al. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresource Technology 2016; 201: 50–57. doi: 10.1016/j.biortech.2015.11.035
141. Kumar N, Chauhan NS. Nano-biocatalysts: Potential biotechnological applications. Indian Journal Microbiology 2021; 61(4): 441–448. doi: 10.1007/s12088-021-00975-x
142. Zdarta J, Meyer AS, Jesionowski T, Pinelo M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018; 8(2): 92. doi: 10.3390/catal8020092
143. Zdarta J, Norman M, Smułek W, et al. Spongin-based scaffolds from Hippospongia communis demosponge as an effective support for lipase immobilization. Catalysts 2017; 7(5): 147. doi: 10.3390/catal7050147
144. Kucharska K, Rybarczyk P, Hołowacz I, et al. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018; 23(11): 2937. doi: 10.3390/molecules23112937
145. Valverde-Pérez B, Xing W, Zachariae AA, et al. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production. Bioresource Technology 2020; 310: 123388. doi: 10.1016/j.biortech.2020.123388
146. Sahoo KK, Goswami G, Das D. Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: Current state of art and future prospects. Frontier Microbiology 2021; 12: 636486. doi: 10.3389/fmicb.2021.636486
147. Cucaita A, Piochon M, Villemur R. Co-culturing Hyphomicrobium nitrativorans strain NL23 and Methylophaga nitratireducenticrescens strain JAM1 allows sustainable denitrifying activities under marine conditions. Peer J 2021; 9: e12424. doi: 10.7717/peerj.12424
148. Takeuchi M, Yoshioka H. Acetate excretion by a methanotroph, Methylocaldum marinum S8, under aerobic conditions. Bioscience, Biotechnology, and Biochemistry 2021; 85(11): 2326–2333. doi: 10.1093/bbb/zbab150
149. Ruiz-Ruiz P, Gómez-Borraz TL, Revah S, Morales M. Methanotroph-microalgae co-culture for greenhouse gas mitigation: Effect of initial biomass ratio and methane concentration. Chemosphere 2020; 259: 127418. doi: 10.1016/j.chemosphere.2020.127418
150. Le HTQ, Lee EY. Methanotrophs: Metabolic versatility from utilization of methane to multi-carbon sources and perspectives on current and future applications. Bioresource Technology 2023; 384: 129296. doi: 10.1016/j.biortech.2023.129296
151. Zhang C, Ottenheim C, Weingarten M, Ji L. Microbial utilization of next-generation feedstocks for the biomanufacturing of value-added chemicals and food ingredients. Frontiers in Bioengineering and Biotechnology 2022; 10: 874612. doi: 10.3389/fbioe.2022.874612
152. Pham DN, Nguyen AD, Lee EY. Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology. Chemical Engineering Journal 2022; 449: 137769. doi: 10.1016/j.cej.2022.137769
153. Kang CK, Jeong SW, Jo JH, et al. High-level squalene production from methane using a metabolically engineered Methylomonas sp. DH-1 strain. ACS Sustainable Chemistry & Engineering 2021; 9(48): 16485–16493. doi: 10.1021/acssuschemeng.1c06776
DOI: https://doi.org/10.24294/ace.v7i1.2646
Refbacks
- There are currently no refbacks.
License URL: https://creativecommons.org/licenses/by-nc/4.0/