A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: Basic principles

Mancuso Giuseppe

Article ID: 1096
Vol 0, Issue 0, 2018, Article identifier:

VIEWS - 371 (Abstract) 198 (PDF)


In the last years, hydrodynamic cavitation (HC) was increasingly used for a variety of applications in the field of wastewater treatment, ranging from biological applications (i.e. cells disruption) to chemical reactions such as oxidation of organic, bio-refractory and toxic pollutants in aqueous effluents. HC is induced in fluids by subjecting them to velocity variations due to the presence of constrictions in the flow. This process involves the formation, growth, implosion and subsequent collapse of micro-bubbles, occurring in extremely small intervals of time and releasing large magnitudes of energy over a very small location. In this paper, the vast literature on HC is critically reviewed, focusing on the basic principles behind it, in terms of process definition and analysis of governing mechanisms of both HC generation and pollutants degradation. The influence of various parameters on HC effectiveness was assessed, considering fluid properties, construction features of HC devices and technological aspects of processes. The synergetic effect of HC combined with chemicals or other techniques was discussed. An overview of the main devices used for HC generation and different existing methods to evaluate the cavitation effectiveness was provided. Knowledge buildup and optimization for such complex systems from mathematical modeling was highlighted.


Hydrodynamic cavitation; Computational Fluid Dynamics; Modeling; Pollutant degradation; Wastewater treatment

Full Text:



M. Čudina, Detection of cavitation phenomenon in a centrifugal pump using audible sound, 17 (2003) 1335–1347.

P.J. McNulty, I.S. Pearsall, Cavitation inception in pumps, J. Fluids Eng. 104 (1982) 99–104.

G.D. Neil, R.L. Reuben, P.M. Sandford, E.R. Brown, J.A. Steel, Detection of incipient cavitation in pumps using acoustic emission, J. Process Mech. Eng. 211 (1997) 267–277.

A.J. Stepanoff, Cavitation in Centrifugal Pumps With Liquids Other Than Water, J. Eng. Power. 83 (1961) 79–89.

X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, M. Coussirat, Detection of cavitation in hydraulic turbines, Mech. Syst. Signal Process. 20 (2006) 983–1007.

K. Ogawa, T. Kimura, Hydrodynamic characteristics of a butterfly valve–Prediction of pressure loss characteristics, ISA Trans. 34 (1995) 319–326.

W.M.J. Batten, A.S. Bahaj, A.F. Molland, J.R. Chaplin, The prediction of the hydrodynamic performance of marine current turbines, Renew. Energy. 33 (2008) 1085–1096.

G. Mancuso, M. Langone, M. Laezza, G. Andreottola, Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl, Ultrason. Sonochem. 32 (2016) 18–30.

G. Mancuso, M. Langone, G. Andreottola, A swirling jet-induced cavitation to increase activated sludge solubilisation and aerobic sludge biodegradability, Ultrason. Sonochem. 35 (2016) 489–501.

N.T. Le, C. Julcour-lebigue, H. Delmas, An executive review of sludge pretreatment by sonication, JES. 37 (2015) 139–153.

P.R. Gogate, A.M. Kabadi, A review of applications of cavitation in biochemical engineering / biotechnology, 44 (2009) 60–72.

P.R. Gogate, Cavitation: an auxiliary technique in wastewater treatment schemes, Adv. Environ. Res. 6 (2002) 335–358.

M. Sivakumar, A.B. Pandit, Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique, Ultrason. Sonochem. 9 (2002) 123–31.

T. Suenaga, M. Nishimura, H. Yoshino, H. Kato, M. Nonokuchi, T. Fujii, H. Satoh, A. Terada, M. Hosomi, High-pressure jet device for activated sludge reduction: Feasibility of sludge solubilization, Biochem. Eng. J. 100 (2015) 1–8.

H.J. Kim, D.X. Nguyen, J.H. Bae, The performance of the sludge pretreatment system with venturi tubes, Water Sci. Technol. 57 (2008) 131–137.

K. Hirooka, R. Asano, A. Yokoyama, M. Okazaki, A. Sakamoto, Y. Nakai, Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant., Bioresour. Technol. 100 (2009) 3161–6.

I. Lee, J. Han, The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production, Ultrason. Sonochem. 20 (2013) 1450–1455.

M. Petkovšek, M. Mlakar, M. Levstek, M. Strazar, B. Širok, M. Dular, A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration, 26 (2015) 408–414.

P.N. Patil, P.R. Gogate, L. Csoka, A. Dregelyi-kiss, M. Horvath, Intensification of Biogas production using pretreatment based on hydrodynamic cavitation, Ultrason. Sonochem. 30 (2016) 79–86.

M. Dular, T. Griessler-Bulc, I. Gutierrez-Aguirre, E. Heath, T. Kosjek, A. Krivograd Klemenčič, M. Oder, M. Petkovšek, N. Rački, M. Ravnikar, A. Šarc, B. Širok, M. Zupanc, M. Žitnik, B. Kompare, Use of hydrodynamic cavitation in (waste) water treatment, Ultrason. Sonochem. 29 (2016) 577–588.

Y.T. Didenko, W.B. McNamara, K.S. Suslick, Hot spot conditions during cavitation in water, J. Am. Chem. Soc. 121 (1999) 5817–5818.

D.V. Pinjari, A.B. Pandit, Cavitation milling of natural cellulose to nanofibrils, Ultrason. Sonochem. 17 (2010) 845–852.

Y.T.. Shah, A.B.. Pandit, V.S. Moholkar, Cavitation Reaction Engineering, Luss Dan, 1999.

B.T.J. Mason, J.P. Lorimer, Applied sonochemistry: The uses of power ultrasound in chemistry and processing, 2004.

T.J. Mason, J.P. Lorimer, Sonochemistry , theory, applications and uses of ultrasound in chemistry, in: E.H. Publishers (Ed.), Chichester, 1989: pp. 1150–1151.

R.T. Knapp, J.W. Daily, F.G. Hammit, Cavitation, in: McGraw-Hill, New York, 1970.

S. Pilli, P. Bhunia, S. Yan, R.J. Leblanc, R.D. Tyagi, R.Y. Surampalli, Ultrasonic pretreatment of sludge: A review, Ultrason. Sonochem. 18 (2011) 1–18.

P.R. Gogate, A.B. Pandit, Engineering design methods for cavitation reactors II: Hydrodynamic cavitation, AIChE J. 46 (2000) 1641–1649.

H. Delmas, N.T. Le, L. Barthe, C. Julcour-lebigue, Optimization of hydrostatic pressure at varied sonication conditions – power density , intensity , very low frequency – for isothermal ultrasonic sludge treatment, Ultrason. Sonochem. 25 (2015) 51–59.

F. Avellan, M. Farhat, Shock pressure generated by cavitation vortex collapse, in: Proc. Third Onternational Symp. Cavitation Noise Eros. Fluid Syst., FED-vol 88, ASME Winter Annual Meeting San Francisco, CA, 1989: pp. 119–125.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, W. Lauterborn, Collapse and rebound of a laser-induced cavitation bubble, Phys. Fluids. 13 (2001) 2805–2819.

C.E. Brennen, Cavitation and bubble dynamics, Oxford University, 1995.

J.-P. Franc, J.-M. Michel, Foundamentals of Cavitation, 2005.

P. Riesz, D. Berdahl, C.L. Christman, Free radical generation by ultrasound in aqueous and nonaqueous solutions, Environ. Health Perspect. 64 (1985) 233–252.

Y.G. Adewuyi, Critical Review sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water, Environ. Sci. Technol. 39 (2005) 3409–3420.

M. Farhat, A. Chakravarty, E. Field, Luminescence from hydrodynamic cavitation, Math. Phys. Eng. Sci. 467 (2011) 591–606.

D.. Sunartio, M.. Ashokkumar, F. Grieser, Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives, J. Am. Chem. Soc. 129 (2007) 6031–6036.

H.. Zhao, J.-X.. Wang, Q.-A.. Wang, J.-F.. Chen, J. Yun, Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor, Ind. Eng. Chem. Res. 46 (2007) 8229–8235.

J.M. Jiju, Application of advanced oxidation processes for the degradation of organic water pollutants, Mahtama Gandhi University, 2000.

V.S.. Moholkar, B. Pandit, A., Bubble behavior in hydrodynamic cavitation: Effect of turbulence, AIChE J. 43 (1997) 1641–1648.

Y.. Yan, R.B. Thorpe, Flow regime transitions due to cavitation in the flow through an orifice, Int. J. Multiph. Flow. 16 (1990) 1023–1045.

K.K. Jyoti, A.B. Pandit, Water disinfection by acoustic and hydrodynamic cavitation, 7 (2001) 201–212.

V.K. Saharan, M.P. Badve, A.B. Pandit, Degradation of Reactive Red 120 dye using hydrodynamic cavitation, Chem. Eng. J. 178 (2011) 100–107.

A. Šarc, T. Stepišnik-Perdih, M. Petkovšek, M. Dular, The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation, 34 (2017) 51–59.

M. Petkovšek, M. Zupanc, M. Dular, T. Kosjek, E. Heath, B. Kompare, B. Širok, Rotation generator of hydrodynamic cavitation for water treatment, Sep. Purif. Technol. 118 (2013) 415–423.

F. Jean-Pierre, M. Jean-Marie, Fundamentals of Cavitation, 2004.

J. Choi, C. Hsiao, G. Chahine, S. Ceccio, Growth , oscillation and collapse of vortex cavitation bubbles, J. Fluid Mech. 624 (2009) 255–279.

P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Adv. Environ. Res. 8 (2004) 501–551.

H. Kimoto, Y. Sumita, Heat transfer characteristics of a circular cylinder in a conduit under cavitation, Trans. JSME. 49 (1986) 2312–2313.

X. Feng, H. Lei, J. Deng, Q. Yu, H. Li, Chemical Engineering and Processing : Process Intensification Physical and chemical characteristics of waste activated sludge treated ultrasonically, 48 (2009) 187–194.

L. Xie, A. Terada, M. Hosomi, Disentangling the multiple effects of a novel high pressure jet device upon bacterial cell disruption, Chem. Eng. J. 323 (2017) 105–113.

P. Braeutigam, M. Franke, Z.L. Wu, B. Ondruschka, Role of different parameters in the optimization of hydrodynamic cavitation, Chem. Eng. Technol. 33 (2010) 932–940.

J. Ozonek, Application of Hydrodynamic Cavitation in Environmental Engineering, 2012.

P.R. Gogate, A.B. Pandit, Hydrodynamic cavitation reactors: a state of the art Review, Chem. Eng. 17 (2001) 1–85.

S. Manickam, M. Ashokkumar, Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials, 2014.

A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process, 15 (2008) 49–54.

J. Wang, X. Wang, P. Guo, J. Yu, Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2, Ultrason. Sonochem. 18 (2011) 494–500.

J. Basiri Parsa, S.A. Ebrahimzadeh Zonouzian, Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: Application of scrap iron sheets, Ultrason. Sonochem. 20 (2013) 1442–1449.

J. Ozonek, K. Lenik, Effect of different design features of the reactor on hydrodynamic cavitation process, Arch. Mater. Sci. Eng. 52 (2011) 112–117.

S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway, Ultrason. Sonochem. 34 (2017) 183–194.

S. Rajoriya, S. Bargole, V.K. Saharan, Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives, Ultrason. - Sonochemistry. 37 (2017) 192–202.

J. Carpenter, S. George, V.K. Saharan, Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: Effect of geometry and cavitation number, Chem. Eng. Process. Process Intensif. 116 (2017) 97–104.

J. Wang, X. Wang, P. Guo, J. Yu, Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2., Ultrason. Sonochem. 18 (2011) 494–500. doi:10.1016/j.ultsonch.2010.08.006.

X. Wang, J. Wang, P. Guo, W. Guo, G. Li, Chemical effect of swirling jet-induced cavitation: Degradation of rhodamine B in aqueous solution, Ultrason. Sonochem. 15 (2008) 357–363.

M. Langone, R. Ferrentino, G. Trombino, W.D.E. Puiseau, G. Andreottola, E.C. Rada, M. Ragazzi, Application of a Novel Hydrodynamic Cavitation System in Wastewater Treatment Plants, 77 (2013) 225–234.

P.G. Suryawanshi, V.M. Bhandari, L.G. Sorokhaibam, J.P. Ruparelia, V. V. Ranade, Solvent degradation studies using hydrodynamic cavitation, Environ. Prog. Sustain. Energy. 37 (2017) 295–304.

M. Badve, P. Gogate, A. Pandit, L. Csoka, Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry, Sep. Purif. Technol. 106 (2013) 15–21.

A.L. Prajapat, P.R. Gogate, Intensified depolymerization of aqueous polyacrylamide solution using combined processes based on hydrodynamic cavitation, ozone, ultraviolet light and hydrogen peroxide, Ultrason. Sonochem. 31 (2016) 371–382.

M.M. Gore, V.K. Saharan, D. V. Pinjari, P. V. Chavan, A.B. Pandit, Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques, Ultrason. Sonochem. 21 (2014) 1075–1082.

R.K. Joshi, P.R. Gogate, Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies, Ultrason. Sonochem. 19 (2012) 532–539.

X.. Wang, Y.. Zhang, Degradation of alachlor in aqueous solution by using hydrodynamic cavitation, J. Hazard. Mater. 161 (2009) 202–207.

M.P. Badve, T. Alpar, A.B. Pandit, P.R. Gogate, L. Csoka, Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies, 22 (2015) 272–277.

P.S. Kumar, A.B. Pandit, Modeling Hydrodynamic Cavitation, Chem. Eng. Technol. 22 (1999) 1017–1027.

M.S. Kumar, S.H. Sonawane, A.B. Pandit, Degradation of methylene blue dye in aqueous solution using hydrodynamic Cavitation based hybrid advanced oxidation processes, Chem. Eng. Process. Process Intensif. 122 (2017) 288–295.

P. Thanekar, M. Panda, P.R. Gogate, Degradation of carbamazepine using hydrodynamic combined with advanced oxidation processes, Ultrason. - Sonochemistry. 40 (2018) 567–576.

J. Choi, M. Cui, Y. Lee, J. Kim, Y. Son, J. Khim, Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A: Kinetics and mechanism, Chem. Eng. J. 338 (2018) 323–332.

Y. Tao, J. Cai, X. Huai, B. Liu, A novel device for hazardous substances degradation based on double-cavitating-jets impingement: Parameters optimization and efficiency assessment, J. Hazard. Mater. 335 (2017) 188–196.

S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives, Chem. Eng. J. 158 (2010) 550–557.

K.P. Mishra, P.R. Gogate, Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives, Sep. Purif. Technol. 75 (2010) 385–391.

K. Grübel, J. Suschka, Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process, Environ. Sci. Pollut. Res. 22 (2015) 7258–7270.

M. Garuti, M. Langone, C. Fabbri, S. Piccinini, Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant, Bioresour. Technol. 247 (2018) 599–609.

J. Floury, J. Legrand, A. Desrumaux, Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena, Chem. Eng. Sci. 59 (2004) 1285–1294.

S.Y. Tang, M. Sivakumar, A Novel and Facile Liquid Whistle Hydrodynamic Cavitation Reactor to Produce Submicron Multiple Emulsions, Am. Inst. Chem. Eng. (2012) 1–13.

S.S. Save, A.B. Pandit, J.B. Joshi, Use of hydrodynamic cavitation for large scale microbial cell disruption, IChemE. 75 (1997) 41–49.

X. Wang, J. Wang, P. Guo, W. Guo, C. Wang, Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2, J. Hazard. Mater. 169 (2009) 486–491.

X. Wang, J. Jia, Y. Wang, Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Chem. Eng. J. 315 (2017) 274–282.

L.F.R. Montgomery, G. Bochmann, Pretreatment of feedstock for enhanced biogas production, IEA Bioenergy. (2014) 1–20.

M. Langone, M. Soldano, C. Fabbri, F. Pirozzi, G. Andreottola, Anaerobic digestion of cattle manure influenced by swirling jet induced hydrodynamic cavitation, Appl. Biochem. Biotechnol. 184 (2017) 1200–1218.

A.V. Mohod, P.R. Gogate, G. Viel, P. Firmino, R. Giudici, Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer, Chem. Eng. J. 316 (2017) 751–757.

K.S. Kumar, V.S. Moholkar, Conceptual design of a novel hydrodynamic cavitation reactor, Chem. Eng. Sci. 62 (2007) 2698–2711.

C. Yi, Q. Lu, Y. Wang, Y. Wang, B. Yang, Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation, Ultrason. Sonochem. 43 (2018) 156–165.

P.R. Gogate, G.S. Bhosale, Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters, Chem. Eng. Process. Process Intensif. 71 (2013) 59–69.

J. Wang, Y. Guo, P. Guo, J. Yu, W. Guo, X. Wang, Degradation of reactive brilliant red K-2BP in water using a combination of swirling jet-induced cavitation and Fenton process, Sep. Purif. Technol. 130 (2014) 1–6.

M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, Ž. Blažeka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment., Ultrason. Sonochem. 20 (2013) 1104–12.

M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Sirok, M. Stražar, E. Heath, Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater., Ultrason. Sonochem. (2013) 18–19.

P.R. Gogate, I.Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N.P. Vichare, A.B. Pandit, Cavitation reactors: Efficiency assessment using a model reaction, AIChE J. 47 (2001) 2526–2538.

G. Zhang, P. Zhang, J. Yang, H. Liu, Energy-efficient sludge sonication: Power and sludge characteristics, Bioresour. Technol. 99 (2008) 9029–9031.

G. Mancuso, Experimental and numerical investigation on performance of a swirling jet reactor, Ultrason. Sonochem. 49 (2018) 241–248.

G. Palau-Salvador, P. González-Altozano, J. Arviza-Valverde, Numerical modeling of cavitating flows for simple geometries using FLUENT V6 . 1, Spanish J. Agric. Res. 5 (2007) 460–469.

S.K. Pawar, A. V. Mahulkar, A.B. Pandit, K. Roy, V.S. Moholkar, Sonochemical effect induced by hydrodynamic cavitation: Comparison of Venturi/Orifice flow geometries, VTT Publ. 63 (2017) 4705–4716.

J. Navickas, L. Chen, Cavitating venturi performance characteristics, ASME Fluids Eng. Div. 177 (1993) 153–159.

Q. Wang, Z. Jiang, Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle, Int. J. Therm. Sci. 70 (2013) 132–143.

S.B. Müller, L. Kleiser, Large-Eddy Simulation of Vortex Breakdown in Compressible Swirling Jet Flow, in: Conf. Turbolence Interact., 2006.

S.M. Ashrafizadeh, H. Ghassemi, Experimental and numerical investigation on the performance of small-sized cavitating venturis, Flow Meas. Instrum. 42 (2015) 6–15.

DOI: http://dx.doi.org/10.24294/ace.v0i0.1096


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.