Journal of Polymer Science and Engineering


2578-1855 (Online)

Journal Abbreviation: 

J. Polym. Sci. Eng.

Journal of Polymer Science and Engineering (JPSE) is a peer-reviewed journal dedicated to the rapid publication of fundamental research papers in all areas concerning polymerization techniques and recent advances of plastic engineering. 


  • JPSE solicits research articles covering a broad spectrum of ideas and concepts in polymer science, polymer engineering, and polymer technologies including those on biomaterials, polymer blends, energy conversion and storage, biodegradable polymers and green materials and green technologies. Polymer science and engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes. The journal is also relevant to areas such as, implantable devices, drug delivery systems, bio-nanotechnology and tissue engineering.
  • It accepts original research papers, comprehensive review articles, short communications, etc., for publication. We welcome scholars who are farsighted in this field and those who are interested in deepening the field of JPSE to submit papers


Online Submissions

Registration and login are required to submit items online and to check the status of current submissions.

Already have a Username/Password for Journal of Polymer Science and Engineering?

Need a Username/Password?

Submission Preparation Checklist

As part of the submission process, authors are required to check off their submission's compliance with all of the following items, and submissions may be returned to authors that do not adhere to these guidelines.

  1. The submission has not been previously published, nor is it under the consideration of another journal (or an explanation has been provided in Comments to the Editor).
  2. The submission file is in Microsoft Word or Latex format.
  3. Where available, URLs for the references have been provided.
  4. The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines, which is found in About the Journal.
  5. If submitting to a peer-reviewed section of the journal, the instructions in Ensuring a Blind Review have been followed.

Privacy Statement

EnPress Publisher respects and strives to protect the privacy of its users and visitors. Hence, users and visitors are encouraged to read EnPress Publisher’s privacy policy regarding the usage and handling of user information.

(1) User information

Names and email addresses entered in all EnPress Publisher’s journal sites will be used exclusively for the stated purposes of the journals and will not be made available for any other purpose or to any other party. For submission and peer review, users should register an account for further procedures, including but not limited to name, email, address, interests, affiliation, and postcode, as editors need the information to complete in-house processes (e.g., processing a manuscript).

When users visit the publisher's website, information about the visit is saved in web logs (e.g., device, IP address, time of visit, etc.), which are only used to help improve the structure and content of the website.

(2) User rights

Users have the right to register or update their personal information and contact the publisher to cancel/delete their account if required.

(3) Third-party link

EnPress Publisher is not responsible for private information obtained by third-party websites when users log in via a pop-up screen from third-party software installed on their computer.

When users visit third-party platforms (e.g., LinkedIn, Twitter, COPE, etc.) through hyperlinks from EnPress Publisher’s journal websites, the privacy policy follows the policies of the third-party platforms.

(4) Queries or contact

For any queries about EnPress Publisher’s privacy policy, please contact the editorial office at


Article Processing Charges (APCs)

EnPress Publisher publishes all its journals in “gold” open access format. The scientific community and the general public are free of all restrictions on access (e.g., subscription) and free of many restrictions on using the content as soon as articles are published online. EnPress Publisher does not require readers to purchase any form of subscription to view the online version of the journals. In order for EnPress Publisher to defray editorial and production costs, authors of accepted articles are required to pay Article Processing Charges (APCs). The charges will come from authors' institutes or research funding bodies.



Journal of Polymer Science and Engineering

USD $800


Waiver Policy

EnPress Publisher is committed to promoting academic development in the world without any financial barrier to knowledge sharing and learning. A waiver policy has been developed especially for authors from low-income countries. Authors who are interested in applying for a waiver may contact the editorial office of the journal. EnPress Publisher reserves the right to approve or reject any waiver application. APC waivers do not influence editorial decisions.

APC Payment

Payments for APC of this journal can be made through our online PayPal payment gateway. Enter the article no. into the below textbox and select "Pay Now" to proceed with payment.

Article No.*

*Article No. is mandatory for payment and it can be found on the acceptance letter issued by the Editorial Office. Payment without indicating Article No. will result in processing problem and delay in article processing. Please note that payments will be processed in USD. You can make payment through Masters, Visa or UnionPay card.


Vol 7, No 1 (2024)

The dynamic field of polymer science and engineering continues to advance at a rapid pace, and with it, the integration of these versatile materials in biomedical applications is expected to expand even further. This issue of the Journal of Polymer Science and Engineering showcases the remarkable advancements taking place in the utilization of cutting-edge polymeric and composite materials for biomedical applications. The papers included in this edition explore a diverse range of groundbreaking research that harnesses the unique properties, functionality, and versatility of these cutting-edge materials to address critical challenges across the healthcare and medical industries. The insights presented here underscore the transformative potential of polymer-based solutions to enhance patient care, improve therapeutic outcomes, and drive the development of next-generation biomaterials and medical technologies.

Table of Contents

Open Access
Article ID: 4219
by Simon Ejededawe Igberaese
J. Polym. Sci. Eng. 2024 , 7(1);    151 Views
Abstract There are a number of input parameters that are considered in relation to the stimulatory possibility of constructing a Liquid Metal Battery (LMB). This paper talks about the modeling approach possible for use in LMB research work. Equivalent Circuit Modeling (ECM) is the most common method used to analyze input data or parameters. In analyzing some of the basic elements, such as electrical capacitance, electrical resistance, open circuit voltage, terminal voltage, temperature, time response, time constants, State of Charge (SOC), etc., the cell impedance could be calculated by predicting the system elements that would play key roles in the determination of the parameter identification method for the battery’s Equivalent Circuit Model. Secondly, each element in the model has a known behaviour, which mainly depends on the element type and the values of the parameters that characterize that element. In EIS software, the Graphical Model Editor could be used to build an equivalent circuit model, or the befitting model could be carefully and properly selected. Thirdly, in fitting the Equivalent Circuit Model (ECM) to the initial data or parameters, one must take note that the parameters are strongly dependent on temperature, heat, and losses. Such are: the Open Circuit Voltage (OCV), which is strongly dependent on the temperature, the loss processes depend on temperature; losses produced by the loss processes are dissipated as heat energy; the heat generated or consumed by the electrochemical reactions during normal operation has a defined temperature; and a system with a defined temperature window with safe, stable, and efficient operation is achievable. At the end of this research, the simulation of Lithium (Li) and Cadmium (Cd) was found to be in the proportion of 67:33, which is used to determine the strength of the reactivity of the metals. It can be informed in this article that the Bi and Li chemical compositions of the metals are equal to 49 for Li and 51 for Bismuth, which makes the overall reactivity very high, which could be used for LMB development.
show more
Open Access
Article ID: 4070
by Nathan Grantham-Coogan, Craig Tilton, Helio Matos, Arun Shukla
J. Polym. Sci. Eng. 2024 , 7(1);    459 Views
Abstract This study experimentally investigates the failure behavior of 3D-printed polymer tubes during underwater implosion. Implosion is a prevalent failure mechanism in the underwater domain, and the adaptation of new technology, such as 3D printing, allows for the rapid manufacturing of pressure vessels with complex geometries. This study analyzes the failure performance of 3D-printed polymer structures to aid in the future development of 3D-printed pressure vessels. The 3D-printed tube specimens analyzed were fabricated using digital light synthesis (DLS) technology and included four different case geometries. The geometries consist of three cylindrical shells of varying diameter and thickness and one double hull structure with a cylindrical gyroid core filler. These specimens were submerged in a pressure vessel and subjected to increasing hydrostatic pressure until implosion failure occurred. High-speed photography and Digital Image Correlation (DIC) were employed to capture the collapse event and obtain full-field displacements. Local dynamic pressure histories during failure were recorded using piezoelectric transducers. The findings highlight that the 3D-printed polymers underwent significant deformation and failed at localized points due to material failure. The fracture of the specimens during failure introduced inconsistencies in pressure and impulse data due to the chaotic nature of the failure. Notably, the energy flow analysis revealed that the proportion of energy released via the pressure pulse was lower than in traditional aluminum structures. These findings contribute to our understanding of the behavior of 3D-printed polymers under hydrostatic pressure conditions.
show more
Open Access
Article ID: 4471
by Dustin Pomary, Belinda Selase Korkor, Bernard Owusu Asimeng, Solomon Kingsley Katu, Lily Paemka, Vitus Atanga. Apalangya, Bismark Mensah, E. Johan Foster, Elvis K. Tiburu
J. Polym. Sci. Eng. 2024 , 7(1);    323 Views
Abstract Achatina achatina (AA) is a rich source of collagen due to its large size, but it is underutilized. Type I collagen was extracted from AA to serve as an alternative to existing collagen sources. The collagen was extracted at varying alkaline and temperature conditions to determine the optimal parameters that would give a high yield of acid-soluble collagen. The extracted collagen was characterised using X-ray diffraction, Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to confirm the integrity and purity of the extracted collagen. The type of collagen was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The α-1, α-2, and dimer electrophoresis bands confirmed that the collagen is type I, and the XRD data supported the findings. The highest collagen yield was obtained at 4 ℃ for 48 h, which decreased with increasing temperature due to the instability of the protein in acid at high temperatures. A cytotoxicity test was conducted using an Alamar blue assay. The AA collagen-treated normal prostate cell line (PNT2) showed no significant difference from the untreated control cells. The high-quality type I collagen extracted from AA has the potential for biomedical and other industrial applications.
show more
Open Access
Article ID: 4510
by Kohobhange Karunadasa, Pannilage Madhushanka, Chinthan Manoratne
J. Polym. Sci. Eng. 2024 , 7(1);    122 Views
Abstract The present study demonstrates the fabrication of heterogeneous ternary composite photocatalysts consisting of TiO 2 , kaolinite, and cement (TKCe) , which is essential to overcome the practical barriers that are inherent to currently available photocatalysts. TKCe is prepared via a cost-effective method, which involves mechanical compression and thermal activation as major fabrication steps. The c lay-cement ratio primarily determines TKCe mechanical strength and photocatalytic efficiency , where TKCe with the optimum clay-cement ratio, which is 1:1 , results in a uniform matrix with fewer surface defects. The composites that have a clay-cement ratio below or above the optimum ratio account for comparatively low mechanical strength and photocatalytic activity due to inhomogeneous surfaces with more defects, including particle agglomeration and cracks. The TKCe mechanical strength comes mainly from clay-TiO 2 interactions and TiO 2 -cement interactions. TiO 2 -cement interactions result in CaTiO 3 formation, which significantly increases matrix interactions; however, the maximum composite performance is observed at the optimum titanate level; anything above or below this level deteriorates composite performance. Over 90% degradation rates are characteristic of all TKCe, which follow pseudo-first-order kinetics in methylene blue decontamination. The highest rate constant is observed with TKCe 1 - 1, which is 1.57 h −1 and is the highest among all the binary composite photocatalyst s that were fabricated previously. The TKCe 1 - 1 accounts for the highest mechanical strength, which is 6.97 MPa, while the lowest is observed with TKCe 3 - 1, indicating that the clay-cement ratio has a direct relation to composite strength. TKCe is a potential photocatalyst that can be obtained in variable sizes and shapes, complying with real industrial wastewater treatment requirements.
show more
Open Access
Article ID: 3440
by Lucky Ogheneakpobo Ejeta, Ehiaghe Agbovhimen Elimian
J. Polym. Sci. Eng. 2024 , 7(1);    299 Views
Abstract Solid waste has become a major environmental concern globally in recent years due to the tremendous increase in waste generation. However, these wastes (e.g., plastics and agro-residues) can serve as potential raw materials for the production of value-added products such as composites at low cost. The utilization of these waste materials in the composite industry is a good strategy for maintaining the sustainability of resources with economic and environmental benefits. In this report, the environmental impacts and management strategies of solid waste materials are discussed in detail. The study described the benefits of recycling and reusing solid wastes (i.e., plastic and agro-waste). The report also reviewed the emerging fabrication approaches for natural particulate hybrid nanocomposite materials. The results of this survey reveal that the fabrication techniques employed in manufacturing composite materials could significantly influence the performance of the resulting composite products. Furthermore, some key areas have been identified for further investigation. Therefore, this report is a state-of-the-art review and stands out as a guide for academics and industrialists.
show more
Open Access
Article ID: 3618
by Anns Raju Reshma, M. R. Rekha
J. Polym. Sci. Eng. 2024 , 7(1);    251 Views
Abstract Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
show more
Open Access
Article ID: 3441
by Lucky Ogheneakpobo Ejeta
J. Polym. Sci. Eng. 2024 , 7(1);    270 Views
Abstract In today’s manufacturing sector, high-quality materials that satisfy customers’ needs at a reduced cost are drawing attention in the global market. Also, as new applications are emerging, high-performance biocomposite products that complement them are required. The production of such high-performance materials requires suitable optimization techniques in the formulation/process design, not simply mixing natural fibre/filler, additives, and plastics, and characterization of the resulting biocomposites. However, a comprehensive review of the optimization strategies in biocomposite production intended for infrastructural applications is lacking. This study, therefore, presents a detailed discussion of the various optimization approaches, their strengths, and weaknesses in the formulation/process parameters of biocomposite manufacturing. The report explores the recent progress in optimization techniques in biocomposite material production to provide baseline information to researchers and industrialists in this field. Therefore, this review consolidates prior studies to explore new areas.
show more
Open Access
Article ID: 4276
by Shahab Khan, Inam Ullah, Salman Khan, Sanila Ajmal, Najmus Saqib, Faizan Ur Rahman, Shahid Ali
J. Polym. Sci. Eng. 2024 , 7(1);    415 Views
Abstract This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
show more
More Articles>>



Notice: JPSE changed to be a semi-annual journal

Starting from 2024, the publication frequency of Journal of Polymer Science and Engineering (JPSE) is semi-annual. All articles that have been accepted will be online in time without delay. We welcome high-quality submissions in all disciplines of traditional fields of polymer chemistry, physics and engineering involving polymers, but also within interdisciplinary developing fields, such as functional and specialty polymers, biomaterials, polymers and drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, the interphases between polymers and ceramics, and new fabrication techniques.


Editorial Office of Journal of Polymer Science and Engineering (JPSE)

Posted: 2024-03-26

Notice: New layout style in 2024

Journal of Polymer Science and Engineering will adopt a new layout style starting from Volume 7, Issue 1, 2024. Contributors should follow the new author guidelines and download the new template for preparing manuscripts.

Another important change is that Creative Commons Attribution (CC BY) license ( will be applied to new publications.

Journal of Polymer Science and Engineering welcomes high-quality submissions from researchers from all over the world.

Posted: 2024-01-05

Notice: 2023 Volume 6 Issue 1 available online

We are pleased to inform all our readers that Volume 6 Issue 1 is now available online (click here for its full content).

2023 is a key turning year for Journal of Polymer Science and Engineering (JPSE). During this year, we have renewed our editorial board members, formed a new managing team, and further raised the standard of journal operations. Judging from the year's publication, these changes have had a positive effect. We would like to express our sincere gratitude to all the scholars who have been involved in the publication of this journal. We would also like to thank all the authors who have placed their trust in us to publish their excellent research in the journal.

We are confident that this issue of the journal will provide readers with cutting-edge information. We look forward to readers downloading and reading it.

Posted: 2024-01-03
More Announcements...