Mycoremediation: The case of Pleurotus ostreatus on polymers synthetics such as cellulose acetate

Isabel Barrantes-Jiménez, Ericka Marín-Sandí, Monica Murillo-Murillo, David Rojas-Rojas, Sergio Vallecillo-Cedeño, Sebastián Valverde-Rojas

Article ID: 11793
Vol 8, Issue 1, 2025

VIEWS - 64 (Abstract)

Abstract


Fungi can be used to remove or degrade polluting compounds through a mycoremediation process. Sometimes even more efficiently than prokaryotes, they can therefore be used to combat pollution from non-biodegradable polymers. Cellulose acetate is a commonly used material in the manufacture of cigarette butts, so when discarded, it generates pollution. The fungus Pleurotus ostreatus has the ability to degrade cellulose acetate through the enzymes it secretes. The enzyme hydrolyzes the acetyl group of cellulose acetate, while cellulolytic enzymes degrade the cellulose backbone into sugars, polysaccharides, or cellobiose. In addition to cellulose acetate, this fungus is capable of degrading other conventionally non-biodegradable polymers, so it has the potential to be used to reduce pollution. Large-scale cultivation of the fungus has proven to be more economically viable than conventional methods for treating non-biodegradable polymers, which is an additional advantage.


Keywords


fungi; biodegradable; acetylesterase; plastic; cigarette butts

Full Text:

PDF


References


1.         Romero-Bautista L, Islas-Santillán MÁ, López-Herrera M, et al. The fungi polyporoids of the river sub-basin Metztitlán, Hidalgo, Mexico (Spanish). In: Pulido-López G, Monks S, López-Herrera M (editors). Studies in Biodiversity. Zea Books; 2015. Volume 1. pp. 196-209.

2.         Gadd GM. Mycotransformation of organic and inorganic substrates. Mycologist. 2024; 18(2): 60-70. doi: 10.1017/S0269-915X(04)00202-2

3.         Mathur M, Gehlot P. Mechanistic evaluation of bioremediation properties of fungi. In: Singh J, GehlotNew P (editors). New and Future Developments in Microbial Biotechnology and Bioengineering: Recent Advances in Application of Fungi and Fungal Metabolites: Current Aspects. Elsevier; 2020. pp. 267-286. doi: 10.1016/B978-0-12-821005-5.00020-X

4.         Medaura MC, Guivernau M, Prenafeta-Boldú FX, et al. Mycoremediation and its application for the treatment of soils contaminated with heavy hydrocarbons (Spanish). In: Proceedings of the 5th Ibero-American Symposium on Solid Waste Engineering; 15-16 October 2013; Mendoza, Argentina. pp. 1-7.

5.         Tsujiyama S, Muraoka T, Takada N. Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnology Letters. 2013; 35(7): 1079-1083. doi: 10.1007/s10529-013-1179-5

6.         Miguel Sánchez LE, Martínez Villa G, Mentado Morales J, et al. Electrochemical degradation of 2,4-dichlorophenol in an FM01-LC electrochemical reactor (Spanish). In: Proceedings of the 38th National Meeting of AMIDIQ; 9-12 May 2017; Guerrero, Mexico. pp. 1-5.

7.         Eskander S, Abd El-Aziz S, El-Sayaad H, et al. Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. International Scholarly Research Notices. 2012; 2012: 329676. doi: 10.5402/2012/329676

8.         Verma A, Thakur S, Mamba G, et al. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. International Journal of Biological Macromolecules. 2020; 148: 1130-1139. doi: 10.1016/j.ijbiomac.2020.01.142

9.         Yogita R, Simanta S, Aparna S, et al. Biodegradation of malachite green by wild mushroom of Chhatisgrah. Journal of Experimental Sciences. 2011; 2(10): 69-72.

10.     Olusola SA, Anslem EE. Bioremediation of a crude oil polluted soil with pleurotus pulmonarius and glomus mosseae using amaranthus hybridus as a test plant. Journal of Bioremediation & Biodegradation. 2010; 1: 113. doi: 10.4172/2155-6199.1000113

11.     Villacres Manzano ES. Toxicological Analysis of Hydrocarbons Applied to Occupational Health [Bachelor’s thesis] (Spanish). Pontifical Catholic University of Ecuador; 2015.

12.     Dadachova E, Bryan RA, Huang X, et al. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One. 2007; 2(5): e457. doi: 10.1371/journal.pone.0000457

13.     Prasad Y, Sachin D. Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian Journal of Experimental Biological Sciences. 2013; 4(2): 190-195.

14.     Gonzalez González JP. Bioremediation processes in the treatment of solid cigarette waste. Journal of Hazardous Materials. 2021; 416.

15.     Gu JD, Eberiel DT, McCarthy SP, et al. Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. Journal of Environmental Polymer Degradation. 1993; 1(2): 143-153. doi: 10.1007/BF01418207

16.     Rivard CJ, Adney WS, Himmel ME, et al. Effects of natural polymer acetylation on the anaerobic bioconversion to methane and carbon dioxide. Applied Biochemistry and Biotechnology. 1992; 34(1): 725-736. doi: 10.1007/BF02920592

17.     Puls J, Wilson SA, Hölter D. Degradation of cellulose acetate-based materials: A review. Journal of Polymers and the Environment. 2011; 19(1): 152-165. doi: 10.1007/s10924-010-0258-0

18.     Biely P, MacKenzie CR, Puls J, et al. Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Nature Biotechnology. 1986; 4(8): 731-733. doi: 10.1038/nbt0886-731

19.     Tuor U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of Biotechnology. 1995; 41(1): 1-17. doi: 10.1016/0168-1656(95)00042-O

20.     Fernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, et al. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnology for Biofuels. 2016; 9(1): 49. doi: 10.1186/s13068-016-0462-9

21.     Altaner C, Saake B, Tenkanen M, et al. Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. Journal of Biotechnology. 2003; 105(1-2): 95-104. doi: 10.1016/S0168-1656(03)00187-1

22.     da Silva IF, da Luz JMR, Oliveira SF, et al. High-yield cellulase and LiP production after SSF of agricultural wastes by Pleurotus ostreatus using different surfactants. Biocatalysis and Agricultural Biotechnology. 2019; 22: 101428. doi: 10.1016/j. bcab.2019.101428

23.     Rahman MS, Fernando S, Ross B, et al. Endoglucanase (EG) activity assays. Methods in Molecular Biology. 2018; 1796: 169-183. doi: 10.1007/978-1-4939-7877-9_13

24.     Yennamalli RM, Rader AJ, Kenny AJ, et al. Endoglucanases: Insights into thermosta- bility for biofuel applications. Biotechnology for Biofuels. 2013; 6(1): 136. doi: 10.1186/1754-6834-6-136

25.     Hosseni M. Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts: Technologies and Approaches for Scale-Up and Commercialization, 1st ed. Woodhead Publishing; 2019. doi: 10.1016/C2018-0-02436-6

26.     Updyke R. Biodegradation and Feasibility of Three Pleurotus Species on Cigarette Filters [Honors thesis]. The University of Maine; 2014.

27.     Jiménez A. This company recycles cigarette butts to contribute to the circular economy. WORTEV; 2021. Available online: https://wortev.com/historias/esta-empresa-recicla-las-colillas-de-cigarro-para-contribuir-a-la-economia-circular/ (accessed on 2 January 2025].

28.     da Luz JMR, Paes SA, Nunes MD, et al. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One. 2013; 8(8): e69386. doi: 10.1371/journal.pone.0069386

29.     Cavazzalli JRP, Brito MS, Oliveira MGA, et al. Lignocellulolytic enzymes profile of three Lentinula edodes (Berk.) Pegler strains during cultivation on eucalyptus bark-based medium. Journal of Food Agriculture and Environment. 2004; 2(1): 291-297.

30.     Pérez SR, Oduardo NG, Savón RCB, et al. Decolourisation of mushroom farm wastewater by Pleurotus ostreatus. Biodegradation. 2009; 19: 519-526. doi: 10.1007/s10532-007-9157-z

31.     Sánchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances. 2009; 27(2): 185-194. doi: 10.1016/j.biotechadv.2008.11.001

32.     Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology. 2002; 58: 582–594. doi: 10.1007/s00253-002-0930-y

33.     Medouni-Haroune L, Zaidi F, Medouni-Adrar S, et al. Selective isolation and screening of actinobacteria strains producing lignocellulolytic enzymes using olive pomace as substrate. Iranian Journal of Biotechnology. 2017; 15(1): 74-77. doi: 10.15171/ijb.1278

34.     Mills N, Jenkins M. Plastics: Microstructure and Engineering Applications, 3rd ed. Butterworth-Heinemann; 2005.

35.     Rath JM, Rubenstein RA, Curry LE, et al. Cigarette litter: Smokers attitudes and behaviors. International Journal of Environmental Research and Public Health. 2012; 9(6): 2189-2203. doi: 10.3390/ijerph9062189

36.     Hernandez-Rubio LC. Strategies for Cigarette Butt Degradation: A Literature Review [Bachelor’s thesis] (Spanish). Xavierian Pontifical University; 2020.

37.     Kainthola J, Kalamdhad AS, Goud VV, et al. Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresource Technology. 2019; 286: 121368. doi: 10.1016/j.biortech.2019.121368

38.     Ziemiński K, Romanowska I, Kowalska M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management. 2012; 32(6): 1131-1137. doi: 10.1016/j.wasman.2012.01.016

39.     Wang P, Liu C, Chang J, et al. Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw. Renewable Energy. 2019; 138: 502-508. doi: 10.1016/j.renene.2019.01.118

40.     Rojas L, Liliana C. Alternative Uses of Rice Husk (Oriza sativa) in Colombia for the Improvement of the Productive Sector and Industry (Spanish). National Open and Distance University; 2020.

41.     da Luz JMR, Paes SA, Ribeiro KVG, et al. Degradation of green polyethylene by Pleurotus ostreatus. PLoS One. 2015; 10(6): e0126047. doi: 10.1371/journal.pone.0126047

42.     Santo M, Weitsman R, Sivan A. The role of the copper-binding enzymelaccase in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation. 2013; 84: 204–210. doi: 10.1016/j.ibiod.2012.03.001

43.     Sivan A. New perspectives in plastic biodegradation. Current Opinion in Biotechnology. 2011; 22(3): 422-426. doi: 10.1016/j.copbio.2011.01.013

44.     Bermúdez Lizarazo EF. Feasibility Study for Mushroom Cultivation (Pleurotus sp.) at the Santa Elena Farm in the Municipality of Suratá, Santander, and Marketing in the City of Bucaramanga and Its Metropolitan Area [Bachelor’s thesis]. University of Santander; 2019.




DOI: https://doi.org/10.24294/jpse11793

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Isabel Barrantes-Jiménez, Ericka Marín-Sandí, Monica Murillo-Murillo, David Rojas-Rojas, Sergio Vallecillo-Cedeño, Sebastián Valverde-Rojas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.