Vol 8, No 3 (2025)

Table of Contents

Open Access
Article
Article ID: 11723
PDF
by Raghvendra Patel, Chandramauli Chandramauli
J. Geogr. Cartogr. 2025, 8(3);    1322 Views
Abstract

Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area’s most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district’s total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Additionally, 50 km2, or 1.35%, is categorized as very high soil erosion and around 30 km2 of the study area is classified as experiencing severe soil erosion. The analysis further discovers that the annual soil loss in the district varies between 0 and 151 tons per hectare per year. This study indicates that most of the district is classified under low soil erosion; only a tiny fraction of the area is categorized as experiencing high and very high soil erosion. The study provides significant insights into soil erosion for policymakers and human society to bring their attention to the need for sustainable soil conservation practices in the undulating terrain/topography and agriculturally dominated district of Anuppur.

show more
Open Access
Article
Article ID: 11632
by Biniyam Taye Alamrew
J. Geogr. Cartogr. 2025, 8(3);    32 Views
Abstract

One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.

show more
Open Access
Article
Article ID: 11545
by Jianwen Wang
J. Geogr. Cartogr. 2025, 8(3);    51 Views
Abstract Land use as for human-circumstance interaction is as we all know changed the global land surface sharply and continuously. Farmland abandonment is the phenomenon of going extreme of marginal of land use, which exert positive and negative impacts on our living circumstances. In order to map the extent of farmland abandonment of Zhejiang Province, we try to use the geo-big data analysis platform to perform the massive data preprocessing and map the extent of farmland abandonment of the study area based on multi-source land use and land cover data. Then we execute landscape pattern analysis using landscape pattern analysis software and spatial auto-correlation (Moran’s I) analysis based on ArcGIS and Fragstats software. We found that the area of farmland is about 16.32% on account of all land use types, which is 1.89104 km2.While the whole area of FA is 1.72×108m2, and the farmland abandonment ratio is 1.65%. AF’s area is about 1.95×109m2, and the continuous cultivation ratio is 18.69%. The landscape fragmentation, landscape aggregation and landscape diversity of FA, AF and FL are different. At the same time, the spatial auto-correlation of FA and AF are dominant high congregation and low discrete. At last, we compared our calculated results with the existed research results which demonstrate our research does scientific convincible. We also make futural prospects prediction and show the research deficiency as well as bring out some policy implications based on our research, which means build proper land use management regulation and decrease the farmland abandonment on account of the premise of suitable land use policies.
show more
Open Access
Review
Article ID: 11553
PDF
by Basit Ali Khan, Saad Ali Khan
J. Geogr. Cartogr. 2025, 8(3);    4515 Views
Abstract

The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.

show more