Soil erosion and sediment yield assessment using RUSLE and GIS based Model: Case study in Aguat Wuha dam catchment area Northwest Ethiopia)

Biniyam Taye Alamrew

Article ID: 11632
Vol 8, Issue 3, 2025

VIEWS - 32 (Abstract)

Abstract


One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.


Keywords


Aguat Wuha Dam catchment, RUSLE, sedimentation, sediment delivery ratio, sediment yield, soil loss, Watershed



References

  1. G. Girmay, A. Moges, and A. Muluneh, “Estimation of soil loss rate using the USLE model for Agewmariayam Watershed , northern,” Agric. Food Secur., pp. 1–12, 2020, doi: 10.1186/s40066-020-00262-w.
  2. Y. Hagos, “Estimating Landscape Vulnerability to Soil Erosion by RUSLE Model Using GIS and Remote Sensing : A Case of Zariema watershed , Northern Ethiopia,” 2020.
  3. A. Degife, H. Worku, and S. Gizaw, “Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed , south ‑ central Ethiopia,” Environ. Syst. Res., 2021, doi: 10.1186/s40068-021-00232-6.
  4. B. Y. Xiaoqing, World Meteorological Organization Operational Hydrology Report no. 47 Manual on Sediment Management and Measurement, no. 47. 2003.
  5. Z. yin WANG and C. HU, “Strategies for managing reservoir sedimentation,” Int. J. Sediment Res., vol. 24, no. 4, pp. 369–384, 2009, doi: 10.1016/S1001-6279(10)60011-X.
  6. L. I. Management and N. Road, “Soil Erosion and Sedimentation Modelling and Monitoring of the Areas Between Rivers Juba and Shabelle in Southern Somalia,” no. June, 2009.
  7. A. Wubalem, “Estimation of Soil Erosion Using RUSLE in GIS Frame Work : In the Case Study of Wanka Catchment in Estie,” vol. 7, no. 2, pp. 23–32, 2022, doi: 10.11648/j.es.20220702.11.
  8. C. Tundu, M. J. Tumbare, and J. K. Onema, “Sedimentation and Its Impacts / Effects on River System and Reservoir Water Quality : case Study of Mazowe Catchment , Zimbabwe,” pp. 57–66, 2018.
  9. T. G. Abebe and A. Woldemariam, “Erosion spatial distribution mapping and sediment yield estimation using RUSLE and Arc GIS of Ayigebire watershed , North Shewa zone of Amhara region , Ethiopia,” Water-Energy Nexus, no. xxxx, 2023, doi: 10.1016/j.wen.2023.12.002.
  10. G. M. Kondolf et al., “Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents,” Earth’s Futur., vol. 2, no. 5, pp. 256–280, 2014, doi: 10.1002/2013ef000184.
  11. I. E. Issa, Siltation and Sedimentation Problem in Mosul Reservoir Dam. 2013.
  12. D. E. Walling and D. Fang, “Recent trends in the suspended sediment loads of the world’s rivers,” Glob. Planet. Change, vol. 39, no. 1–2, pp. 111–126, 2003, doi: 10.1016/S0921-8181(03)00020-1.
  13. T. Sumi and T. Hirose, “Accumulation of sediment in reservoirs,” Water storage, Transp. Distrib., pp. 224–252, 2009.
  14. Y. T. Zerihun, “A Study of the Sedimentation and Storage Capacity Depletion of a Reservoir,” Slovak J. Civ. Eng., vol. 31, no. 2, pp. 37–47, 2023, doi: 10.2478/sjce-2023-0011.
  15. D. Kanito, B. Bedadi, and S. Feyissa, “Sediment yield estimation in GIS environment using RUSLE and SDR model in Southern Ethiopia,” Geomatics, Nat. Hazards Risk, vol. 14, no. 1, p., 2023, doi: 10.1080/19475705.2023.2167614.
  16. N. C. W. N. S. A. D. M. S. L. B. Dissanayake, “GIS-based soil loss estimation using RUSLE model : a case of Kirindi Oya river basin , Sri Lanka,” Model. Earth Syst. Environ., vol. 4, no. 1, pp. 251–262, 2018, doi: 10.1007/s40808-018-0419-z.
  17. U. S. D. of Agriculture and Soil, “Soil Conservation Service,” 1998.
  18. B. Dargahi, “Reservoir sedimentation,” Encycl. Earth Sci. Ser., vol. l, pp. 628–649, 2012, doi: 10.1007/978-1-4020-4410-6_215.
  19. Z. Adimassu, K. Mekonnen, C. Yirga, and A. Kessler, “Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of ethiopia,” L. Degrad. Dev., vol. 25, no. 6, pp. 554–564, 2014, doi: 10.1002/ldr.2182.
  20. A. Angassa, “Effects of grazing intensity and bush encroachment on herbaceous species and rangeland condition in Southern Ethiopia,” L. Degrad. Dev., vol. 25, no. 5, pp. 438–451, 2014, doi: 10.1002/ldr.2160.
  21. H. S. Gelagay, “RUSLE and SDR Model Based Sediment Yield Assessment in a GIS and Remote Sensing Environment; A Case Study of Koga Watershed, Upper Blue Nile Basin, Ethiopia,” J. Waste Water Treat. Anal., vol. 7, no. 2, 2016, doi: 10.4172/2157-7587.1000239.
  22. T. Erkossa, A. Wudneh, B. Desalegn, and G. Taye, “Linking soil erosion to on-site financial cost: Lessons from watersheds in the Blue Nile basin,” Solid Earth, vol. 6, no. 2, pp. 765–774, 2015, doi: 10.5194/se-6-765-2015.
  23. R. Lal, “Soil degradation by erosion.Land degradation Dev.,” L. Degrad. Dev., vol. 539, no. 2001, pp. 519–539, 2001.
  24. Mekonnen, “Erosion Control in Agricultural Areas : An Ethiopian Perspective Introduction of Vetiver Grass,” 2000.
  25. S. D. Angima, D. E. Stott, M. K. O’Neill, C. K. Ong, and G. A. Weesies, “Soil erosion prediction using RUSLE for central Kenyan highland conditions,” Agric. Ecosyst. Environ., vol. 97, no. 1–3, pp. 295–308, 2003, doi: 10.1016/S0167-8809(03)00011-2.
  26. P. Asrat, K. Belay, and D. Hamito, “Determinants of farmers’ willingness to pay for soil conservation practices in the southeastern highlands of Ethiopia,” L. Degrad. Dev., vol. 15, no. 4, pp. 423–438, 2004, doi: 10.1002/ldr.623.
  27. G. Ayalew, “Soil Loss Estimation for Soil Conservation Planning using Geographic Information System in Guang Watershed , Blue Nile Basin,” vol. 5, no. 1, pp. 126–135, 2015.
  28. M. Haile, K. Herweg, and B. Stillhardt, Sustainable land management: a new approach to soil and water conservation in Ethiopia. Centre for Development and Environment (CDE) and NCCR North-South, University of Bern, Switzerland. 2006.
  29. A. C. Ekwe, N. N. Onu, and K. M. Onuoha, “Journal of Spatial Hydrology Journal of Spatial Hydrology,” J. Spat. Hydrol., vol. 6, no. 1, pp. 1–14, 2006, [Online]. Available: http://www.spatialhydrology.com/journal/paper/2006/small_hydel/paper_josh.rar
  30. M. Mustefa, “Estimation of Annual Soil Loss Rate from Hangar River Watershed Using,” MSc. Thesis. Jimma Univ. Jimma., p. 84, 2018.
  31. K. P. Bhandari, J. Aryal, and R. Darnsawasdi, “A geospatial approach to assessing soil erosion in a watershed by integrating socio-economic determinants and the RUSLE model,” Nat. Hazards, vol. 75, no. 1, pp. 321–342, 2015, doi: 10.1007/s11069-014-1321-2.
  32. M. Development et al., “Integration of remote sensing , RUSLE and GIS to model potential soil loss and sediment yield ( SY ),” 2013, doi: 10.5194/hessd-10-4567-2013.
  33. S. Ebrahimzadeh, M. Motagh, V. Mahboub, and F. Mirdar Harijani, “An improved RUSLE/SDR model for the evaluation of soil erosion,” Environ. Earth Sci., vol. 77, no. 12, pp. 1–17, 2018, doi: 10.1007/s12665-018-7635-8.
  34. L. Tsegaye and R. Bharti, “Soil erosion and sediment yield assessment using RUSLE and GIS ‑ based approach in Anjeb watershed , Northwest Ethiopia,” SN Appl. Sci., no. August 2020, 2021, doi: 10.1007/s42452-021-04564-x.
  35. G. Tibebu, “Challenges and Opportunities of Female Headed Households in Livestock Production: the Case of Simada Woreda,” 2019.
  36. C. Fernández, J. A. Vega, T. Fonturbel, P. Pérez-Gorostiaga, E. Jiménez, and J. Madrigal, “Effects of Wildfire , Salvage Logging and Slash,” L. Degrad. Dev., vol. 607, no. July, pp. 591–607, 2007, doi: 10.1002/ldr.
  37. J. Nyssen et al., Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia’s tropical mountains, vol. 14, no. 10. 2019. doi: 10.1371/journal.pone.0224041.
  38. A. Rabia, R. Afifi, and A. Gelaw, “Soil mapping and classification: a case study in the Tigray Region, Ethiopia,” J. Agric. …, vol. 107, no. 1, pp. 73–99, 2013, [Online]. Available: http://www.iao.florence.it/ojs/index.php/JAEID/article/view/81
  39. A. Sembroni, “The uplift of the ethiopian plateau,” 2020.
  40. R. Hindersah, Z. Handyman, F. N. Indriani, P. Suryatmana, and N. Nurlaeny, “JOURNAL OF DEGRADED AND MINING LANDS MANAGEMENT Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter,” J. Degrad. Min. L. Manag., vol. 5, no. 53, pp. 2502–2458, 2018, doi: 10.15243/jdmlm.
  41. O. Amans, W. Beiping, and Y. Ziggah, “Assessing Vertical Accuracy of SRTM Ver 4.1 and ASTER GDEM Ver 2 Using Differential GPS Measurements–Case Study in Ondo State Nigeria,” Int. J. Sci. Eng. Res., vol. 4, no. 12, pp. 523–531, 2013.
  42. B. T. Alamrew, T. Kassawmar, L. Mengstie, and M. Jothimani, “Combined GIS, FR and AHP approaches to landslide susceptibility and risk zonation in the Baso Liben district, Northwestern Ethiopia,” Quat. Sci. Adv., vol. 16, no. October, p. 100250, 2024, doi: 10.1016/j.qsa.2024.100250.
  43. A. A. Millward and J. E. Mersey, “Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed,” Catena, vol. 38, no. 2, pp. 109–129, 1999, doi: 10.1016/S0341-8162(99)00067-3.
  44. Wischmeier and Smith, “This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible .,” Biol. Cent., vol. 2, pp. v–413, 1978.
  45. Y. Farhan, D. Zregat, and I. Farhan, “Spatial Estimation of Soil Erosion Risk Using RUSLE Approach, RS, and GIS Techniques: A Case Study of Kufranja Watershed, Northern Jordan,” J. Water Resour. Prot., vol. 05, no. 12, pp. 1247–1261, 2013, doi: 10.4236/jwarp.2013.512134.
  46. T. Amsalu and A. Mengaw, “GIS Based Soil Loss Estimation Using RUSLE Model: The Case of Jabi Tehinan Woreda, ANRS, Ethiopia Keywords GIS, Remote Sensing, Multi-Criteria Evaluation (MCE), RUSLE, Weighted Overlay, Land Use/Land Cover (LULC), Soil Loss,” Nat. Resour., vol. 5, pp. 616–626, 2014, [Online]. Available: http://www.scirp.org/journal/nr%0Ahttp://dx.doi.org/10.4236/nr.2014.511054%0Ahttp://creativecommons.org/licenses/by/4.0/
  47. W. B. and E. Teferi2, “Assessment of Soil Erosion Hazard and Prioritization for Treatment at the Watershed level: Case Study in the Chemoga Watershed, Blue Nile Basin, Ethiopia,” L. Degrad. Dev., vol. 607, no. July, pp. 591–607, 2007, doi: 10.1002/ldr.
  48. A. Shamshad, M. N. Azhari, M. H. Isa, W. M. A. W. Hussin, and B. P. Parida, “Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia,” Catena, vol. 72, no. 3, pp. 423–432, 2008, doi: 10.1016/j.catena.2007.08.002.
  49. Hurni, “Soil Erosion and Soil Formation in Agricultural Ecosystems : Ethiopia and Northern Thailand Author ( s ): Hans Hurni Source : Mountain Research and Development , May , 1983 , Vol . 3 , No . 2 , Workshop on the Stability and Instability of Mountain Ecosyst,” vol. 3, no. 2, pp. 14–19, 1985.
  50. D. Lu, G. Li, G. S. Valladares, and M. Batistella, “Mapping soil erosion risk in Rondônia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS,” L. Degrad. Dev., vol. 15, no. 5, pp. 499–512, 2004, doi: 10.1002/ldr.634.
  51. J. Kaltenrieder, “Journal of Sustainable Development in Africa,” Adapt. Valid. Univers. Soil Loss Equ. Ethiop. Highl., vol. 13, no. 1520–5509, pp. 47–60, 2007.
  52. K. G. Renard, J. M. Laflen, G. R. Foster, and D. K. McCool, “The revised universal soil loss equation,” Soil Eros. Res. Methods, pp. 105–126, 2017, doi: 10.1201/9780203739358.
  53. K. G. Renard, F. G.R., W. G.A., and M. D.K., Predicting soil erosion by water : A guide to conservation planning with the revised universal soil loss equation (RUSLE). US Department of Agriculture, Agriculture Handbook No.703USDA, USDA, Washington DC. 1997.
  54. M. and Mitasova, “Modelling topographic potential for erosion and deposition using GIS,” Int. J. Geogr. Inf. Syst., vol. 10, no. 5, pp. 629–641, 1996, doi: 10.1080/02693799608902101.
  55. H. S. Kim, “Soil Erosion Modeling Using Rusle and Gis,” 2006.
  56. K. Ghosal and S. Das Bhattacharya, “A Review of RUSLE Model,” J. Indian Soc. Remote Sens., vol. 48, no. 4, pp. 689–707, 2020, doi: 10.1007/s12524-019-01097-0.
  57. Y. S. Kebede, N. T. Endalamaw, B. G. Sinshaw, and H. B. Atinkut, “Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia,” Environ. Challenges, vol. 2, no. November 2020, p. 100009, 2021, doi: 10.1016/j.envc.2020.100009.
  58. S. M. Dabney, D. C. Yoder, and D. A. N. Vieira, “The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield,” J. Soil Water Conserv., vol. 67, no. 5, pp. 343–353, 2012, doi: 10.2489/jswc.67.5.343.
  59. F. Karamage, C. Zhang, T. Liu, A. Maganda, and A. Isabwe, “Soil erosion risk assessment in Uganda,” Forests, vol. 8, no. 2, pp. 1–20, 2017, doi: 10.3390/f8020052.
  60. M. K. Jain and U. C. Kothyari, “Estimation of soil erosion and sediment yield using GIS,” Hydrol. Sci. J., vol. 45, no. 5, pp. 771–786, 2000, doi: 10.1080/02626660009492376.
  61. V. Ferro and M. Minacapilli, “Sediment delivery processes at basin scale,” Hydrol. Sci. J., vol. 40, no. 6, pp. 703–717, 2009, doi: 10.1080/02626669509491460.
  62. L. Tsegaye and R. Bharti, “Soil erosion and sediment yield assessment using RUSLE and GIS-based approach in Anjeb watershed, Northwest Ethiopia,” SN Appl. Sci., vol. 3, no. 5, pp. 1–19, 2021, doi: 10.1007/s42452-021-04564-x.
  63. N. Haregeweyn et al., “Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River,” Sci. Total Environ., vol. 574, pp. 95–108, 2017, doi: 10.1016/j.scitotenv.2016.09.019.
  64. Shin, “Portrait of Byron,” Anal. Soil Eros. Anal. Watershed Using GIS. Fort Collins, Color. 12p., vol. s4-IV, no. 102, p. 520, 1999, doi: 10.1093/nq/s4-IV.102.520-a.
  65. Y. S. Kebede, N. T. Endalamaw, B. G. Sinshaw, and H. B. Atinkut, “Modeling soil erosion using RUSLE and GIS at watershed level in the upper beles, Ethiopia,” Environ. Challenges, vol. 2, no. December 2020, p. 100009, 2021, doi: 10.1016/j.envc.2020.100009.
  66. M. Belayneh, T. Yirgu, and D. Tsegaye, “Potential soil erosion estimation and area prioritization for better conservation planning in Gumara watershed using RUSLE and GIS techniques’,” Environ. Syst. Res., vol. 8, no. 1, 2019, doi: 10.1186/s40068-019-0149-x.
  67. J. M. Kusimi, G. A. B. Yiran, and E. M. Attua, “Soil Erosion and Sediment Yield Modelling in the Pra River Basin of Ghana using the Revised Universal Soil Loss Equation (RUSLE),” Ghana J. Geogr., vol. 7, no. 2, pp. 38–57, 2015.
  68. A. Palmieri, G. W. Annandale, A. Dinar, T. B. Johndrow, and F. Kawashima, S., Shah, “RESCON Approach,” World Bank, Washington, DC, USA, no. June, p. 102, 2003, [Online]. Available: http://documents.worldbank.org/curated/en/819541468138875126/RESCON-approach
  69. N. P. Efthymiou, S. Palt, G. W. Annandale, and P. Karki, “Reservoir Conservation Model Rescon 2 Beta,” p. 219, 2017, [Online]. Available: https://www.hydropower.org/sediment-management/resources/tool-reservoir-conservation-model-rescon-2-beta


DOI: https://doi.org/10.24294/jgc11632

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Biniyam Taye Alamrew

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.