Endocrine dysfunctions during treatment of immune-checkpoint inhibitors

Hidefumi Inaba, Hiroyuki Ariyasu, Hisako Okuhira, Yuki Yamamoto, Hiroaki Akamatsu, Masahiro Katsuda, Masatoshi Jinnin, Isao Hara, Takashi Akamizu

Article ID: 606
Vol 4, Issue 1, 2020

VIEWS - 4772 (Abstract)

Abstract


Immune-checkpoint inhibitors (ICIs) are novel agents directed to various malignant tumors. During ICI therapy, however, immune related adverse effects (irAEs) including endocrine dysfunctions have been reported. Dysfunctions in the pituitary gland and the thyroid gland by ICI are often observed, and those in the adrenal glands and the pancreas are less frequent. Positive correlation of the prevalence of endocrine irAEs to clinical antitumor effectiveness during ICI therapy has been reported. The mechanisms of endocrine irAEs by ICI, however, remain unclear, and optimal prevention, prediction, and treatment of the irAEs are still uncertain. This review describes possible mechanisms involved in ICI-related immunity, and discusses clinical management of endocrine irAEs during ICI therapy.


Keywords


PD-1; CTLA-4; immune-checkpoint inhibitors; endocrine organs; irAEs

Full Text:

PDF


References


1. Blank CU, Enk A. Therapeutic use of anti-CTLA-4 antibodies. Int Immunol 2015; 27(1): 3–10. doi: 10.1093/intimm/dxu076.

2. Okazaki T, Honjo T. PD-1 and PD-1 ligands: From discovery to clinical application. Int Immunol 2007; 19(7): 813–824. doi: 10.1093/intimm/dxm057

3. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711–723. doi: 10.1056/NEJMoa1003466.

4. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454. doi: 10.1056/NEJMoa1200690.

5. Byun DJ, Wolchok JD, Rosenberg LM, et al. Cancer immunotherapy - immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol 2017; 13(4): 195–207. doi: 10.1038/nrendo.2016.205.

6. Torino F, Corsello SM, Salvatori R. Endocrinological side-effects of immune checkpoint inhibitors. Curr Opin Oncol 2016; 28(4): 278–287. doi: 10.1097/CCO.0000000000000293.

7. Corsello SM, Barnabei A, Marchetti P, et al. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab 2013; 98(4): 1361–1375. doi: 10.1210/jc.2012-4075.

8. Weber JS, D'Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16(4): 375–384. doi: 10.1016/S1470-2045(15)70076-8.

9. Ariyasu H, Inaba H, Ota T, et al. Thyrotoxicosis and Adrenocortical Hormone Deficiency During Immune-checkpoint Inhibitor Treatment for Malignant Melanoma. In Vivo 2018; 32(2): 345–351. doi: 10.21873/invivo.11244

10. Trainer H, Hulse P, Higham CE, et al. Hyponatraemia secondary to nivolumab-induced primary adrenal failure. Endocrinol Diabetes Metab Case Rep 2016; 2016. pii: 16-0108 doi: 10.1530/EDM-16-0108

11. Shiba M, Inaba H, Ariyasu H, et al. A case of fulminant type 1 diabetes mellitus accompanied by positive conversion of anti-insulin antibody after the administration of anti-CTLA-4 antibody following the discontinuation of anti-PD-1 antibody. Intern Med 2018; Feb 28. doi: 10.2169/internalmedicine.9518-17.

12. Teló GH, Carvalhal GF, Cauduro CGS, et al. Fulminant type 1 diabetes caused by dual immune checkpoint blockade in metastatic renal cell carcinoma. Ann Oncol 2017; 28(1): 191–192. doi: 10.1093/annonc/mdw447.

13. Win MA, Thein KZ, Qdaisat A, et al. Acute symptomatic hypocalcemia from immune checkpoint therapy-induced hypoparathyroidism. Am J Emerg Med 2017; 35(7): 1039.e5–1039.e7. doi: 10.1016/j.ajem.2017.02.048.

14. Caturegli P, Newschaffer C, Olivi A, et al. Autoimmune hypophysitis. Endocr Rev 2005; 26(5): 599–614. doi: 10.1210/er.2004-0011

15. Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary 2016; 19(1): 82–92. doi: 10.1007/s11102-015-0671-4.

16. Faje AT, Sullivan R, Lawrence D, et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab 2014; 99(11): 4078–4085. doi: 10.1210/jc.2014-2306.

17. Zhao C, Tella SH, Del Rivero J, et al. Anti-PD-L1 Treatment induced central diabetes insipidus. J Clin Endocrinol Metab 2018; 103(2): 365–369. doi: 10.1210/jc.2017-01905.

18. Caturegli P, Di Dalmazi G, Lombardi M, et al. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: Insights into pathogenesis from an autopsy series. Am J Pathol 2016; 186(12): 3225–3235. doi: 10.1016/j.ajpath.2016.08.020.

19. Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 2014; 6(230): 230ra45. doi: 10.1126/scitranslmed.3008002.

20. Akamizu T, Mori T, Nakao K. Pathogenesis of Graves' disease: Molecular analysis of anti-thyrotropin receptor antibodies. Endocr J 1997; 44(5): 633–646. PMID: 9466318

21. Akamizu T, Amino N. Hashimoto’s Thyroiditis. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-2017 Jul 17. PMID: 25905412 Bookshelf ID: NBK285557

22. Kiyohara Y, Uhara H, Ito Y, et al. Safety and efficacy of nivolumab in Japanese patients with malignant melanoma: An interim analysis of a postmarketing surveillance. J Dermatol 2018; 45(4): 408–415. doi: 10.1111/1346-8138.14227.

23. Orlov S, Salari F, Kashat L, et al. Induction of painless thyroiditis in patients receiving programmed death 1 receptor immunotherapy for metastatic malignancies. J Clin Endocrinol Metab 2015; 100(5): 1738–1741. doi: 10.1210/jc.2014-4560.

24. de Filette J, Jansen Y, Schreuer M, et al. Incidence of Thyroid-Related Adverse Events in Melanoma Patients Treated With Pembrolizumab. J Clin Endocrinol Metab 2016; 101(11): 4431–4439. doi: 10.1210/jc.2016-2300

25. Ryder M, Callahan M, Postow MA, et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer 2014; 21(2): 371–381. doi: 10.1530/ERC-13-0499.

26. Osorio JC, Ni A, Chaft J, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol 2017; 28(3): 583–589. doi: 10.1093/annonc/mdw640.

27. Morganstein DL, Lai Z, Spain L, et al. Thyroid abnormalities following the use of cytotoxic T-lymphocyte antigen-4 and programmed death receptor protein-1 inhibitors in the treatment of melanoma. Clin Endocrinol 2017; 86(4): 614–620. doi: 10.1111/cen.13297.

28. Torino F, Corsello S, Salvatori R, et al. Endocrinological side-effects of immune checkpoint inhibitors. Curr Opin Oncol 2016; 28(4): 278–287. doi: 10.1097/CCO.0000000000000293.

29. Kobayashi T, Iwama S, Yasuda Y, et al. Patients With Antithyroid Antibodies Are Prone To Develop Destructive Thyroiditis by Nivolumab: A Prospective Study. J Endocr Soc 2018; 2(3): 241–251. doi. 10.1210/js.2017-00432

30. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med 2003; 348(26): 2646–2655. DOI: 10.1056/NEJMra021194

31. Gan EH, Mitchell AL, Plummer R, et al. Tremelimumab-Induced Graves Hyperthyroidism. Eur Thyroid J 2017; 6(3): 167–170. doi: 10.1159/000464285.

32. Brandão Neto RA, de Carvalho JF. Diagnosis and classification of Addison's disease (autoimmune adrenalitis). Autoimmun Rev 2014; 13(4-5): 408–11. doi: 10.1016/j.autrev.2014.01.025.

33. Joshi MN, Whitelaw BC, Palomar MT, et al. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: clinical review. Clin Endocrinol 2016;85(3):331–339. doi: 10.1111/cen.13063.

34. Paepegaey AC, Lheure C, Ratour C, et al. Polyendocrinopathy resulting from pembrolizumab in a patient with a malignant melanoma. J Endocr Soc 2017; 1(6): 646–649. doi: 10.1210/js.2017-00170.

35. Min L, Ibrahim N. Ipilimumab-induced autoimmune adrenalitis. Lancet Diabetes Endocrinol 2013; 1(3): e15. doi: 10.1016/S2213-8587(13)70031-7.

36. Bacanovic S, Burger IA, Stolzmann P. Ipilimumab-induced adrenalitis: A possible pitfall in 18F-FDG-PET/CT. Clin Nucl Med 2015; 40(11): e518-519. doi: 10.1097/RLU.0000000000000887.

37. Scott ES, Long GV, Guminski A, et al. The spectrum, incidence, kinetics and management of endocrinopathies with immune checkpoint inhibitors for metastatic melanoma. Eur J Endocrinol 2018; 178(2): 175–182. doi: 10.1530/EJE-17-0810.

38. Akamizu T, Sale M, Rich S, et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients. Thyroid 2000; 10(10): 851–858. doi: 10.1089/thy.2000.10.851

39. Bicek A, Zaletel K, Gaberscek S, et al. 49A/G and CT60 polymorphisms of the cytotoxic T-lymphocyte-associated antigen 4 gene associated with autoimmune thyroid disease. Hum Immunol 2009; 70(10): 820–824. doi: 10.1016/j.humimm.2009.06.016.

40. Hayashi M, Kouki T, Takasu N, et al. Association of an A/C single nucleotide polymorphism in programmed cell death-ligand 1 gene with Graves' disease in Japanese patients. Eur J Endocrinol 2008; 158(6): 817–822. doi: 10.1530/EJE-07-0649.

41. Falorni A, Brozzetti A, Perniola R. From genetic predisposition to molecular mechanisms of autoimmune primary adrenal insufficiency. Front Horm Res 2016; 46: 115–132. doi: 10.1159/000443871.

42. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet 2016; 387(10035): 2331–2339. doi: 10.1016/S0140-6736(16)30582-7.

43. [43]43 Pizarro C, García-Díaz DF, Codner E, et al. PD-L1 gene polymorphisms and low serum level of PD-L1 protein are associated to type 1 diabetes in Chile. Diabetes Metab Res Rev 2014; 30(8): 761–766. doi: 10.1002/dmrr.2552.

44. Vita R, Guarneri F, Agah R, et al. Autoimmune thyroid disease elicited by NY-ESO-1 vaccination. Thyroid 2014; 24(2): 390–394. doi: 10.1089/thy.2013.0170.

45. Khoja L, Day D, Wei-Wu Chen T, et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Ann Oncol 2017; 28(10): 2377–2385. doi: 10.1093/annonc/mdx286.

46. Weber JS, Hamid O, Chasalow SD, et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J Immunother. 2012; 35(1): 89–97. doi: 10.1097/CJI.0b013e31823aa41c.

47. Simpson TR, Li F, Montalvo-Ortiz W, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 2013; 210(9): 1695–1710. doi: 10.1084/jem.20130579.

48. Kari S, Flynn JC, Zulfiqar M, et al. Enhanced autoimmunity associated with induction of tumor immunity in thyroiditis-susceptible mice. Thyroid 2013; 23(12): 1590–1599. doi: 10.1089/thy.2013.0064.

49. Vudattu NK, Waldron-Lynch F, Truman LA, et al. Humanized mice as a model for aberrant responses in human T cell immunotherapy. J Immunol 2014; 193(2): 587–596. doi: 10.4049/jimmunol.1302455.

50. Ansari MJ, Salama AD, Chitnis T, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 2003; 198(1): 63–69.

51. Kochupurakkal NM, Kruger AJ, Tripathi S, et al. Blockade of the programmed death-1 (PD1) pathway undermines potent genetic protection from type 1 diabetes. PLoS One 2014; 9(2): e89561. doi: 10.1371/journal.pone.0089561

52. Yamauchi I, Sakane Y, Fukuda Y, et al. Clinical features of nivolumab-induced thyroiditis: A case series study. Thyroid 2017; 27(7): 894–901. doi: 10.1089/thy.2016.0562

53. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018: JCO2017776385. doi: 10.1200/JCO.2017.77.6385

54. Sato K, Akamatsu H, Murakami E, et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer 2018; 115: 71–74. doi: 10.1016/j.lungcan.2017.11.019.

55. Seidel JA, Otsuka A, Kabashima K. Treating tumors with immune checkpoint inhibitors: Rationale and limitations. Trends Immunother 2017; 1(1): 2–9. doi: 10.24294/ti.v1.i1.20.




DOI: https://doi.org/10.24294/ti.v4.i1.606

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Hidefumi Inaba, Hiroyuki Ariyasu, Hisako Okuhira, Yuki Yamamoto, Hiroaki Akamatsu, Masahiro Katsuda, Masatoshi Jinnin, Isao Hara, Takashi Akamizu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.