Type I IFNs and M. bovis BCG vaccine: The sword to target germinal centers and unlock humoral immunity in leprosy
Vol 3, Issue 1, 2019
(Abstract)
Abstract
Leprosy is a still a serious human health problema in developed countries. Environmental and genetic factors are playing a key role in the chronic course of the disease, resistance versus susceptibility. The multidrug treatment is not effective for all infected individuals; “cured” individuals mostly show relapses of neurological disordes and potential as the same as not cured can present physical and deformed constrainst. The unsolved puzzle in leprosy is that clinic spectrum depends of the host immune response.and thus, the outcome of the immune response. In the present review we intended to describe some aspects of the immunotherapy, based on type I IFNs and M. bovis BCG vaccine as a strategy such as sword to target germinal centers, either for the generation or for the enhancement and thus, throughout key signals delivered by folicular CD4+ T cells, and controlled by folicular regulatory CD4+ T cells, B cell differentiation into plasmacytoid cells be highly promoted the induction of protective high affinity neutralyzing antibodies to unlock humoral immunity, protective toward M. leprae infected individuals.
Keywords
Full Text:
PDFReferences
1. Global leprosy update. 2014. Need for early case detection. Wdy. Epdiemiol. Rec. 2015; 90: 461-474
2. Lastoria JC, & MA Abreu. Leprosy review of the epidemiological clinical and etnopathogenic aspects-part 1. An Bras Dermatol. 2014; 89: 2015-218
3. Rodriguez JIA, Gresta IT, Noviello M de I, Cartelle CT, Lyon S, Arantes RM, Leprosy classification methods: a comparative study in a referral character in Brazil. Int. J. Infect. Dis. 2016; 45: 118-122.
4. Cottle LE. Mendelina susceptibility to mycobacterial disease. Clin Genet. 2011: 79: 17-22
5. Alter A, Grant A, Abel L, Alcais A, E Schurr. Leprosy as a genetic disease. Mamm Genome. 2011; 22: 19-31
6. Bochud PV, Hawn TR, Aderem. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol. 2003; 120: 3451-354
7. Alcais A, Alter A, Antoni G, Orlova M, Nguyen VT, Singh M, Vanderborght PR, Katoch K, Mira MT, Vu HT, Ngyuen TH, Nguyen NB, Moraes M, Mehra N, Schurr E, Abel L. 2007. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat. Genet. 2007; 39: 517-522
8. Adams BL, Pena TM, Sharma R, Hagge DA, Schurr E, RW. Truman. Insights from animal models on the immunogenetics of leprosy. Mem Inst. Oswaldo Cruz. 2012; 107:197-208
9. Adams LB, Scollard DM, Ray NA, Cooper AM, Frank AA. Orme IM, Krahenbuhl JL. The study of Mycobcaterium leprae infection in interferon-gamma gene-disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J. Infect Dis. 2002; 185: 81-88
10. Lyrio EC, Campos-Souza IC, Corrêa LC, Lechuga GC, Verícimo M, Castro HC, Bourguignon SC, Côrte-Real S, Ratcliffe N, Declercq W, Santos DO. Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy. Exp Dermatol. 2015; 24:536-42. doi: 10.1111/exd.12714.
11. Silva CA, Danelishvili L, McNamara M, Berredo-Pinho M, Bildfell R, Biet F, Rodrigues LS, Oliveira AV, Bermudez LE, Pessolani MC. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis. Infect Immun. 2013:2645-59. doi: 10.1128/IAI.00147-1
12. da Silva FJ, Souza ODA, Santos JP, Diaz URCC, Baeta BA, Texeira CR, da Silva NA, R SP, Pessolani VMC, Moraes OM, Bechara GH, de Oliveira PL, Ferreira SMH, Suffys PN, Brum FAN, Saky LB, Fonseca AH, Lara FA. Ticks as a potential vectors of Mycobacterium leprae; Use of tick cell lines to culture the bacilli and generate transgenic strains. Plos Negl Trop Dis. 2019; 12: e0007001. Doi.org/10.1371/journal.pntd.0007001
13. Riddley DS & Jopling WH. Classification of leprosy according to immunity. A five group system. Int. J. Lepr Other Mycobacteria Dis. 1966; 34: 255-273
14. Oliveira RB, Ochoa MT, Sieling PA. Rea TH, Rambukkana A, Sarmo PN, Modlin RI. Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect. Immun. 2003; 71: 1427-1433
15. Akira S, Tukeda K. Toll-like receptor signalling. Nat Rev. Immunol. 2004; 499-511
16. Robert L. Modlin. The innate immune response in leprosy. Curr. Opin Immunol. 2010; 22: 48-54
17. Silva-Mianda M, Rodriguez KW, Martinez CE, and rojas-Espinoza O. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy. Int. J. Exp. Path. 2006; 87: 485-494
18. Lee DJ, Li H, Ochoa MT, Tanaka M, Carbone RJ, Damoiseaux R, Burdick A, Sarno EN, Rea HT, and RL Modlin. Integrated pathwayss for neutrophil recruitment and inflammation in leprosy. J. Infect Dis. 2010; 201: 558-569.doi:1 10. 1086/650318
19. Fonseca AB, Simon MD, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, Reed SG, de Jesus AR. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 2017; 6:5. doi: 10.1186/s40249-016-0229-3.
20. Tarique M, Saini C, Naz H, Naqvi RA, Khan FI, Sharma A. Fate of T Cells and their Secretory Proteins During the Progression of Leprosy. Curr Protein Pept Sci. 2018;19:889-899. doi: 10.2174/1389203718666170829120729.
21. Amaral JJ, Antunes LC, de Macedo CS, Mattos KA, Han J, Pan J, Candéa AL, Henriques Md, Ribeiro-Alves M, Borchers CH, Sarno EN, Bozza PT, Finlay BB, Pessolani MC. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease. PLoS Negl Trop Dis. 2013; 7(8):e2381. doi: 10.1371/journal.pntd.0002381
22. Sadhu S, Khaitan BK, Joshi B, Sengupta U, Nautiyal AK, Mitra DK. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy. PLoS Negl Trop Dis. 2016 11;:e0004338. doi: 10.1371/journal.pntd.0004338. eCollection Victora DG and MC Nussenweig. Germinal centers. Annu Rev Immunol. 2012; 30: 429-437
23. Vinuesa CG, Linterman MA, Yu D, and IC MacLennan. Folliculat Helper T Cells. Annu. Rev. Immunol. 2016; 34: 335-368
24. Miles B, Connick E. Control of the Germinal Center by Follicular Regulatory T Cells During Infection. Front Immunol. 2018; 9:2704. doi: 10.3389/fimmu.2018.02704. eCollection 2018.
25. Tarique M1, Naz H2, Kurra SV1, Saini C1, Naqvi RA1, Rai R1, Suhail M3, Khanna N4, Rao DN1, Sharma A1. Interleukin-10 Producing Regulatory B Cells Transformed CD4+CD25- Into Tregs and Enhanced Regulatory T Cells Function in Human Leprosy. Front Immunol. 2018 Jul 23;9:1636. doi: 10.3389/fimmu.2018.01636. eCollection 2018
26. Ding Y, Li J, Yang P, Luo B, Wu Q, Zajac AJ, Wildner O, Hsu HC, Mountz JD. Interleukin-21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice.. Arthritis Rheumatol. 2014; 66:2601-2612. doi: 10.1002/art.38735
27. Victora DG and MC Nussenweig. Germinal centers. Annu. Rev Immunol. 2012; 30: 429-437
28. Carelli MK and SH Crotty. Germinal center enhancement by extended antigen availability. Current Opin. Immunol. 2017; 47: 64-69
29. Litzler LC, Zahn A, Meli AP, Hébert S, Patenaude AM, Methot SP1, Sprumont A, Bois T, Kitamura D7, Costantino S8, King IL, Kleinman CL, Richard S, Di Noia JM. PRMT5 is essential for B cell development and germinal center dynamics. Nat Commun. 2019; 10:22. doi: 10.1038/s41467-018-07884-6
30. Xie MM, Dent AL. Unexpected Help: Follicular Regulatory T Cells in the Germinal Center. Front Immunol. 2018 Jul 2;9:1536. doi: 10.3389/fimmu.2018.01536
31. Bannard O, Cyster JG. Germinal centers: programmed for affinity maturation and antibody diversification. Curr Opin Immunol. 2017; 45:21-30. doi: 10.1016/j.coi.2016.12.004
32. Cucak H, Ydid U, Reizis B, Kalinke U, and B Johansson-Lindbom. Type I Interferon signaling in Dendritic cells stimulates the develoment of Lymph Node-Resident T folicular helper cells. 2009. Immunity. 31: 491-501.
33. Denton EA, Innocentin S, Carr E, Bradford MB, Lafouress F, Mabbott AN, Morbe U, Ludewig B, Groom RJ, Good-Jacobson LK, and MA Linterman. Type IFNs induces CXCL13 to support ectopic germinal center formation. JEM. 2019. Doi. Org. 10.1084/jem.20181216
34. Chen J, Li N, Yin Y, Zheng N, Min M, Lin B, Zhang L, Long X, Zhang Y, Cai Z, Zhai S, Qin J, Wang X. Methyltransferase Nsd2 Ensures Germinal Center Selection by Promoting Adhesive Interactions between B Cells and Follicular Dendritic Cells. Cell Rep. 2018; 25:3393-3404.e6. doi: 10.1016/j.celrep.2018.11.096
35. Soni C, Wong EB, Domeier PP, Khan TN, Satoh T, Akira S, Rahman ZS. B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J Immunol. 2014;193:4400-4414. doi: 10.4049/jimmunol.1401720.
36. Peng C, Hu Q, Yang F, Zhang H, Li F, Huang C. BCL6-Mediated Silencing of PD-1 Ligands in Germinal Center B Cells Maintains Follicular T Cell Population. J Immunol. 2018; pii: ji1800876. doi: 10.4049/jimmunol.1800876
37. Basso K, Dalla-Favera R. BCL6: master regulator of germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol. 2010;105:193-210. doi: 10.1016/S0065-2776(10)05007-8.
38. Arguni E, Arima M, Tsuruoka N, Sakamoto A, Hatano M, Tokuhisa T. JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int Immunol. 2006; 18:1079-89.
39. Chen J, Li N, Yin Y, Zheng N, Min M, Lin B, Zhang L, Long X, Zhang Y, Cai Z, Zhai S, Qin J, Wang X. Methyltransferase Nsd2 Ensures Germinal Center Selection by Promoting Adhesive Interactions between B Cells and Follicular Dendritic Cells. Cell Rep. 2018; 25:3393-3404.e6. doi: 10.1016/j.celrep.2018.11.096.
40. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, and Tough DT. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001; 14: 461-470
41. Cooper AM, Adams LB, Dalton DK, Appelberg R, Ehlers S. IFN-gamma and NO in mycobacterial disease: new job for old hands. Trends Microbiol. 2002; 10: 221-226
42. O’Garra A, Redford SP, McNab WF, Bloom ICh, Wilkinson JR, and MPR Berry. The immune response in Tuberculosis. Annu. Rev Immunol. 2013; 31: 475-527
43. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis Bacille Calmette-Guerin Infection. J Immunol. 2007;178:3786-3796
44. Tovey MG, Lallemand CH, Meritet JF, and CH Maury. Adjuvant activity of interferon alpha: mechanism(s) of action. Vaccine 2006; 24: S46-S47
45. Prchal M, Pilz A, Simma O, Lingnau K, von Gabain A, Strobl B, Müller M, Decker T. Type I Interferon as mediators of immune adjuvants for T and B cell dependent acquired immunity. Vaccine. 2009; 275: G17-G20
46. Hervas-Stubbs. Effects of IFN-alpha as a signal-3 cytokine on human naïve and antigen-experienced CD8+T cells. Eur.J. Immunol. 2010; 40: 3389-3402
47. Toledo Pinto TG, Batista-Silva LR, Medeiros RCA, Lara FA, Moraes MO. Type I nterferons, Autophagy and Host Metabolism in Leprosy. Front Immunol. 2018 Apr 23;9:806. doi: 10.3389/fimmu.2018.00806. eCollection 2018
48. Deretic V. Autophagy in infection. Curr. Opin. Cell Biol. 2010; 22: 252-262
49. Guerrero GG, Rangel-Moreno JJ, Sergio and Rojas-Espinosa O. Intramuscular immunization of mice with interferón alpha plus BCg vaccine protect mice from M. lepraemurium infection. BioMed Researc International. 2015; ID. 414027.
50. Rivas-Santiago C and Guerrero GG. IFN-α boosting of Mycobacterium bovis BCG-vaccinated mice promoted Th1 type cytokines and protect against M. tuberculosis.BioMed Research International. 2017; ID. 8796760
DOI: https://doi.org/10.24294/ti.v3.i1.1122
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Gloria G Guerrero M
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.