Wave effect and shyness phenomenon in homogeneous forests of Alnus acuminata
Vol 5, Issue 1, 2022
(Abstract)
Abstract
The wave effect and the shyness phenomenon in Alnus acuminata (Kunth) are crown parameters rarely studied, but important in the quality of the wood of standing trees, therefore, a morphometric modeling of the crowns of Alnus acuminata in homogeneous forests in the Sierra Norte de Puebla was carried out. In 20 rectangular sites of 1,000 m2, the following were evaluated: total height (TA), normal diameter (ND), crown diameter (CD) and crown cover (CC). The Kruskal Wallis test was applied to data that did not meet the assumption of normality; for those that did, analysis of variance (ANOVA) was used, with Tukey mean comparison tests (α ≤ 0.05). The forest value index was 14.99, so its two-dimensional structure is normal based on DN, AT and CC. Its average slenderness index was 93.52, which makes the tree not very stable to mechanical damage. The life-space index was 38.92, which is high indicating that trees with low intraspecific competition developed better. At the canopy level, a pattern following an upward, oscillatory and constant wave effect was observed in groups of 10 trees. The shyness phenomenon showed an average crack opening of 27.39 cm between canopies, so this phenomenon is well defined for the species. It is concluded that in the crowns of Alnus acuminata, the wave effect is observed as a consequence of inequality in the acquisition of resources, and one way to minimize this inequality is through the phenomenon of botanical shyness.
Keywords
Full Text:
PDFReferences
1. Cabrelli D, Rebottaro S, Effron D. Characterization of forest canopy and light micro-environment in stands with management different, using hemispherical photography. Quebracho (Santiago del Estero) 2006; (13): 17–25.
2. Delagrange S, Messier C, Lechowicz MJ, et al. Physiological, morphological and allocational plasticity in understory deciduous trees: Importance of plant size and light availability. Tree Physiology 2004; 24(7): 775–784.
3. Tourn GM, Barthélémy D, Grosfeld J. Una aproximación a la arquitectura vegetal: Conceptos, objetivos y metodología (Spanish) [An approach to plant architecture: Concepts, objectives and methodology]. Boletín de la Sociedad Argentina de Botánica 1999; 34(12): 85–99.
4. Jacobs MR. Growth habits of the eucalypts. Australia: Forestry and Timber Bureau, Department of the Interior; 1995.
5. Báez-Hernández A, Herrera-Meza G, Vázquez-Torres M, et al. Allometric relationships of 19 mountain tropical rain forest tree species. Botanical Sciences 2016; 94(2): 209–220. doi: 10.17129/botsci.252.
6. Poorter L, McDonald I, Alarcón A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist 2010; 185(2): 481–492. doi: 10.1111/j.1469-8137.2009.03092.x
7. Frankino WA, Zwaan BJ, Stern DL, et al. Natural selection and developmental constraints in the evolution of allometries. Science 2005; 307(5710): 718–720. doi: 10.1126/science.1105409.
8. Franco M, Harper JL. Competition and the formation of spatial pattern in spacing gradients: An example using Kochia scoparia. The Journal of Ecology 1988; 76(4): 959–974.
9. Zeide B. Fractal analysis of foliage distribution in loblolly pine crowns. Canadian Journal of Forest Research 2011; 28(1): 106–114.
10. doi: 10.1139/cjfr-28-1-106.
11. Hajek P, Seidel D, Leuschner C. Mechanical abrasion, and not competition for light, is the dominant canopy interaction in a temperate mixed forest. Forest Ecology and Management 2015; 348: 108–116. doi: 10.1016/j.foreco.2015.03.019.
12. Liu FL, Jiang F, Wang XP, et al. Stress wave propagation patterns in larch standing trees. Journal of Nanjing Forestry University (Natural Sciences Edition) 2017; 41(3): 133–139.
13. Ibáñez Moreno B, Ávila Castuera JM, Gómez Aparicio L, et al. Dinámicas de vecindad y regeneración del bosque (Spanish) [Neighborhood dynamics and forest regeneration]. Almoraima 2012; 43; 87–110.
14. Zeide B. Analysis of growth equations. Forest Science 1993; 39(3): 594–616. doi: 10.1093/forestscience/39.3.594.
15. Weiner J, Thomas SC. The nature of tree growth and the “age-related decline in forest productivity”. Oikos 2001; 94(2): 374–376.
16. Cao H, Chen Y, Tian Y, et al. Field investigation into wave attenuation in the mangrove environment of the South China Sea coast. Journal of Coastal Research 2016; 32(6): 1417–1427. doi: 10.2112∕JCOASTRES-D-15-00124.1.
17. Binkley D. A hypothesis about the interaction of tree dominance and stand production through stand development. Forest Ecology and Management 2004; 190(23): 265–271. doi: 10.1016/j.foreco.2003.10.018.
18. Serrada HR. Apuntes de selvicultura (Spanish) [Forestry notes]. Madrid, España: Universidad Politécnica de Madrid. E.U.I. Técnica Forestal; 2008.
19. Farrior CE, Bohlman SA, Hubbell S, et al. Dominance of the suppressed: Power-law size structure in tropical forests. Science 2016; 351(6269): 155–157. doi: 10.1126/science.aad0592
20. Rudnicki M, Lieffers VJ, Silins U. Stand structure governs the crown collisions of lodgepole pine. Canadian Journal of Forest Research 2003; 33(7): 1238–1244. doi: 10.1139/x03-055.
21. Coley PD. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 1988; 74(4): 531–536.
22. Goudie JW, Polsson KR, Ott PK. An empirical model of crown shyness for lodgepole pine (Pinus contorta var. latifolia [Engl.] Critch.) in British Columbia. Forest Ecology and Management 2009; 257(1): 321–331. doi: 10.1016/j.foreco.2008.09.005.
23. INEGI (Instituto Nacional de Estadística y Geografía). Perspectiva estadística puebla (Spanish) [Puebla statistical perspective]. Puebla, México: INEGI; 2014.
24. García E. Modificaciones al sistema de clasificación climática de Köppen (Spanish) [Modifications to the climate classification system of Köppen] [Internet]. Universidad Nacional Autónoma de México; 2004. Available from: http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1.
25. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [Conabio]. La Biodiversidad en puebla: Estudio de estado (Spanish) [Biodiversity in Puebla: State study]. México. Puebla, Mexico: Conabio, Gobierno del estado de Puebla, Benemérita Universidad Autónoma de Puebla; 2011.
26. Justavino FC, Hernández JIV, Alcalá VMC, et al. Estructura forestal de un bosque de mangles en el noreste del estado de Tabasco, México (Spanish) [Forest structure of a mangrove forest in the northeast of the state of Tabasco, Mexico]. Revista Mexicana de Ciencias Forestales 2001; 26(90): 73–102.
27. Arias-Aguilar DA. Morfometría del árbol en plantaciones forestales tropicales (Spanish) [Tree morphometry in tropical forest plantations]. Revista Forestal Mesoamericana Kurú 2005; 2(5): 19–32.
28. Montgomery DC. Dzsenoy analtszs of experiments (Spanish) [Design and analysis of experiments]. 2nd ed. Mexico: Limusa Wiley; 2006.
29. Minitab. Software para estadísticas de Minitab, Versión 18 en español para Windows (Spanish) [Minitab Statistical Software, Version 18 for Windows]. State College, Pennsylvania; 2018. Available from: https://www.minitab.com/es-mx/products/minitab//.
30. CATIE (Centro Agronómico Tropical de Investigación y Enseñanza). Jaúl: Alnus acuminata spp. Arguta (Schlechtendal) Furlow, multiple use tree species in central America. Turrialba, Costa Rica: CATIE; 1995.
31. Aguilar-Luna JME, Loeza-Corte JM, García-Villanueva E, et al. Arboreal vegetation structure and diversity in the gallery forest of the Xaltatempa river, Puebla, Mexico. Madera y Bosques 2018; 24(3): e2431616. doi: 10.21829∕myb.2018.2431616.
32. Hernández-Ramos J, Santos-Posadas HM, Valdéz-Lazalde JR, et al. Estimación del volumen comercial en plantaciones de Eucalyptus urophylla con modelos de volumen total y de razón (Spanish) [Estimation of commercial volume in Eucalyptus urophylla plantations with total volume and ratio models]. Agrociencia 2017; 51(5): 561–580.
33. Díaz Bravo S, Espinosa M, Valenzuela L, et al. Effect of thinning on growth and some properties of wood of Eucalyptus nitens in a plantation of 15 years old. Maderas. Ciencia y tecnología 2012; 14(3): 373–388. doi: 10.4067/S0718-221X2012002005000009.
34. Nájera-Luna JA, Hernández-Hernández E. Morphometric relationships of a contemporary forest from the region of El Salto, Durango. Ra Ximhai 2008; 4(1): 69–81.
35. Wilson JS, Oliver CD. Stability and density management in Douglas-fir plantations. Canadian Journal of Forest Research 2000; 30(6): 910–920.
36. Vacchiano G, Derose RJ, Shaw JD, et al. A density management diagram for Norway spruce in the temperate European montane region. European Journal of Forest Research 2013; 132(3): 535–549.
37. Renshaw E, Ford ED. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 1984; 56(2): 75–85.
38. Hallé F. Arquitectura de los árboles (Spanish) [Architecture of the trees]. Boletín de la Sociedad Argentina de Botánica 2010; 45(3–4): 405–418.
39. Smith FW, Long JN. Age-related decline in forest growth: an emergent property. Forest Ecology and Management 2001; 144(1–3): 175–181. doi: 10.1016/S0378-1127(00)00369-8.
40. Gillespie TJ, Duan RX. A comparison of cylindrical and flat plate sensors for surface wetness duration. Agricultural and Forest Meteorology 1987; 40(1): 61–70. doi: 10.1016/0168-1923(87)90055-4.
41. Amponsah IG, Comeau PG, Brockley RP, et al. Effects of repeated fertilization on needle longevity, foliar nutrition, effective leaf area index, and growth characteristics of lodgepole pine in interior British Columbia, Canada. Canadian Journal of Forest Research 2005; 35(2): 440–451. doi: 10.1139∕x04-200.
DOI: https://doi.org/10.24294/sf.v5i1.1615
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jesús Mao Estanislao Aguilar-Luna, Noé Cabrera-Barbecho, Benjamín Barrios-Díaz, Juan Manuel Loeza-Corte
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.