GNSS-Interferometric Reflectometry, spectral artifacts and sea level measurements in the Mediterranean Sea

Roberto Devoti, Sergio Bruni, Grazia Pietrantonio

Article ID: 2358
Vol 6, Issue 2, 2023

VIEWS - 173 (Abstract) 109 (PDF)


Tidal sea level variations in the Mediterranean basin, although altered and amplified by resonance phenomena in confined sub-basins (e.g., Adriatic Sea), are generally confined within 0.5 meters and exceptionally up to 1.5 meters. Here we explore the possibility to retrieve sea level measurements using data from GNSS antennas on duty for ground motion monitoring and analyze the spectral outcomes of such distinctive measurements. We estimate one year of GNSS data collected on the Mediterranean coasts in order to get reliable sea level data from all public-available data and compare it with collocated tide gauges. A total amount of eleven stations was suitable for interferometric analysis (as for 2021) and all were able to supply centimeter level sea level estimates. The spectra in the tidal frequency windows are remarkably similar to tide gauges data. We find that the O1 and M2 diurnal and semidiurnal tides and MK3, MS4 shallow sea water tides may be disturbed by aliasing effects.


GNSS Reflectometry; sea level variations; tides; Mediterranean Sea

Full Text:



1. EuroGOOS. Sea level observation networks in and around Europe. Available online: (accessed on 11 August 2023).

2. Larson KM, Löfgren JS, Haas R. Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research 2013; 51(8): 1301–1310. doi: 10.1016/j.asr.2012.04.017

3. Roesler C, Larson KM. Software tools for GNSS Interferometric Reflectometry. GPS Solutions 2018; 22: 80. doi: 10.1007/s10291-018-0744-8

4. Larson KM, Ray RD, Nievinski FG, Freymueller JT. The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters 2013; 10(5): 1200–1205. doi: 10.1109/LGRS.2012.2236075

5. Press WH, Rybicki GB. Fast algorithm for spectral analysis of unevenly sampled data. Astrophysical Journal 1989; 338(1): 277–280. doi: 10.1086/167197

6. Zajdel R, Sośnica K, Bury G, et al. System‑specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solutions 2020; 24: 74. doi: 10.1007/s10291-020-00989-w.

7. Griffiths J, Ray JR. Sub-daily alias and draconitic errors in the IGS orbits. GPS Solutions 2013; 17(3): 413–422. doi: 10.1007/s10291-012-0289-1

8. Collilieux X, Métivier L, Altamimi Z, et al. Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solutions 2011; 15(3): 219–231. doi: 10.1007/s10291-010-0184-6

9. Penna NT, Stewart MP. Aliased tidal signatures in continuous GPS height time series. Geophysical Research Letters 2003; 30(23): 2184. doi: 10.1029/2003GL018828

10. Dong D, Fang P, Bock Y, et al. Anatomy of apparent seasonal variations from GPS derived site position time series. Journal of Geophysical Research 2002; 107(B4): ETG 9-1–ETG 9-16. doi: 10.1029/2001JB000573

11. Ray JR, Altamimi Z, Collilieux X, van Dam T. Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions 2008; 12(1): 55–64. doi: 10.1007/s10291-007-0067-7

12. Löfgren JS, Haas R, Scherneck HG. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics 2014; 80: 66–80. doi: 10.1016/j.jog.2014.02.012

13. Larson KM, Ray RD, Williams SDP. A 10-Year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. Journal of Atmospheric and Oceanic Technology 2017; 34(2): 295–307. doi: 10.1175/JTECH-D-16-0101.1.

14. Dahl-Jensen TS, Andersen OB, Williams SDP, et al. GNSS-IR Measurements of inter annual sea level variations in Thule, Greenland from 2008–2019. Remote Sensing 2021; 13(24): 5077. doi: 10.3390/rs13245077



  • There are currently no refbacks.

License URL:

This site is licensed under a Creative Commons Attribution 4.0 International License.