Comparative study of sediment loading in sub-watersheds of Phewa Lake, Nepal

Bikesh Jojiju, Rajan Subedi

Article ID: 2184
Vol 6, Issue 1, 2023

VIEWS - 326 (Abstract) 76 (PDF)

Abstract


The present study assessed the potential of sediment loading in Beteni, Lauruk, Andheri, and Harpan sub-watersheds of Phewa Lake and estimated the sediment yield in the year 2020. Morphometry, land use/land cover, geology, climate, and human and development factors of the sub-watersheds were studied to assess the potential of sediment loading in the sub-watersheds. SRTM DEM was used for the computation of morphometric parameters and land use/land cover maps were prepared by using Landsat imagery. Geology, rainfall data, census data, and road maps were collected from various secondary sources. The sediment yields of the four sub-watersheds in the year 2020 were estimated by measuring the sediment volume deposited in the sediment retention ponds at the outlet of each sub-watershed. Results indicated that Beteni had the highest potential for sediment loading, while Harpan had the lowest. Likewise, the sediment yields for Beteni, Lauruk, Andheri, and Harpan sub-watersheds in 2020 were estimated at 1,420.67 m3/km2/year, 2,280.14 m3/km2/year, 1,666.77 m3/km2/year, and 766.42 m3/km2/year, respectively. To reduce sedimentation in Phewa Lake, it is recommended to regularly maintain siltation dams and construct check dams along the drainage slopes, alongside other soil conservation measures and appropriate land use practices in the upstream areas of the sub-watersheds.


Keywords


Phewa Watershed; Siltation Dam; Sediment Yield; Morphometric Analysis; Land Use/Land Cover

Full Text:

PDF


References


1. Hayter EJ, Gailani JZ. Fundamentals of sediment transport. In: Reible DD (editor). Processes, assessment and remediation of contaminated sediments. New York: Springer; 2014. Volume 6, p. 25–79.

2. Westrich B, Forstner U (editors). Sediment dynamics and pollutant mobility in rivers—An Interdisciplinary approach. Berlin: Springer; 2007.

3. Gunawan TA, Daud A, Haki H, Sarino. The estimation of total sediments load in river tributary for sustainable resources management. In: IOP conference series: Earth and environmental science, IOP Conference Series: Earth and Environmental Science; International Conference on SMART CITY Innovation 2018; 2018 Oct 25–26; Bandung, Indonesia. IOP Publishing; 2019. Volume 248, 012079.

4. Mahabaleshwara H, Nagabhushan HM. A study on soil erosion and its impacts on floods and sedimentation. International Journal of Research in Engineering and Technology 2014; 3(3): 443–451. doi: 10.15623/ijret.2014.0315086.

5. Dutta S. Soil erosion, sediment yield and sedimentation of reservoir: A review. Modeling Earth Systems and Environment 2016; 2(3): 1–18. doi: 10.1007/s40808-016-0182-y.

6. Borrelli P, Robinson DA, Panagos P, Ballabio C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proceedings of the National Academy of Sciences of the United States of America 2020; 117(36): 21994–22001. doi: 10.1073/pnas.2001403117.

7. Bai Y, Ochuodho TO, Yang J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators 2019; 102: 51–64. doi: 10.1016/j.ecolind.2019.01.079.

8. Zhao B, Zhang L, Xia Z, et al. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Advances in Civil Engineering 2019; 2019: 1–14 doi: 10.1155/2019/7043428.

9. Zhang S, Li Z, Lin X, Zhang C. Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water 2019; 11(7): 1373. doi: 10.3390/w11071373.

10. Azimi Sardari MR, Bazrafshan O, Panagopoulos T, Rafiei Sardooi E. Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam watershed. Sustainability 2019; 11(12): 3353. doi: 10.3390/su11123353.

11. Chuenchum P, Xu M, Tang W. Estimation of soil erosion and sediment yield in the Lancang-Mekong River using the modified revised universal soil loss equation and GIS techniques. Water 2020; 12(1): 135. doi: 10.3390/w12010135.

12. Gao J, Jiang Y, Wang H, et al. Identification of dominant factors affecting soil erosion and water yield within ecological red line areas. Remote Sensing 2020; 12(3): 399. doi: 10.3390/rs12030399.

13. Sharma S, Mahajan AK. GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science 2020; 10(7): 1–11. doi: 10.1007/s13201-020-01243-x.

14. Ebabu K, Tsunekawa A, Haregeweyn N, et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Science of the Total Environment 2019; 648: 1462–1475. doi: 10.1016/j.scitotenv.2018.08.273.

15. Daramola J, Adepehin EJ, Ekhwan TM, et al. Impacts of land-use change, associated land-use area and runoff on watershed sediment yield: Implications from the Kaduna watershed. Water 2022; 14(3): 1–23. doi: 10.3390/w14030325.

16. Yaekob T, Tamene L, Gebrehiwot SG, et al. Assessing the impacts of different land uses and soil and water conservation interventions on runoff and sediment yield at different scales in the central highlands of Ethiopia. Renewable Agriculture and Food Systems 2022; 37: S73–S87. doi: 10.1017/S1742170520000010.

17. Zhong X, Jiang X, Li L, et al. The impact of socio-economic factors on sediment load: A case study of the yanhe river watershed. Sustainability 2020; 12(6): 2457. doi: 10.3390/su12062457.

18. Du J, Shi C, Fan X, Zhou Y. Impacts of socio-economic factors on sediment yield in the Upper Yangtze River. Journal of Geographical Sciences 2011; 21(2): 359–371. doi: 10.1007/s11442-011-0850-9.

19. Azari M, Moradi HR, Saghafian B, Faramarzi M. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal 2016; 61(1): 123–133. doi: 10.1080/02626667.2014.967695.

20. Li T, Gao Y. Runoff and sediment yield variations in response to precipitation changes: A case study of Xichuan watershed in the Loess Plateau, China. Water 2015; 7(10): 5638–5656. doi: 10.3390/w7105638.

21. Zhang L, Meng X, Wang H, Yang X. Simulated runoff and sediment yield responses to land-use change using the SWAT model in Northeast China. Water 2019; 11(5): 915. doi: 10.3390/w11050915.

22. Ziegler AD, Negishi JN, Sidle RC, et al. Persistence of road runoff generation in a logged catchment in Peninsular Malaysia. Earth Surface Processes and Landforms 2007; 32(13): 1947–1970. doi:10.1002/esp.1508.

23. Thomaz EL, Vestena LR, Ramos Scharrón CE. The effects of unpaved roads on suspended sediment concentration at varying spatial scales—A case study from Southern Brazil. Water and Environment Journal 2014; 28(4): 547–555. doi:10.1111/wej.12070.

24. Rijsdijk A, Sampurno Bruijnzeel LA, Sutoto CK. Runoff and sediment yield from rural roads, trails and settlements in the upper Konto catchment, East Java, Indonesia. Geomorphology 2007; 87(1–2): 28–37. doi:10.1016/j.geomorph.2006.06.040.

25. Lima Farias TR, Medeiros PHA, Navarro-Hevia J, Carlos de Araújo J. Unpaved rural roads as source areas of sediment in a watershed of the Brazilian semi-arid region. International Journal of Sediment Research 2019; 34(5): 475–485. doi: 10.1016/j.ijsrc.2019.03.002.

26. Egboka BC, Orji AE, Nwankwoala HO. Gully erosion and landslides in Southeastern Nigeria: Causes, consequences and control measures. Global Journal of Engineering Sciences 2019; 2(4): 1–11. doi: 10.33552/gjes.2019.02.000541.

27. MacDonald LH, Coe DBR. Road sediment production and delivery: Processes and management [Interent]. Available from: https://ucanr.edu/sites/forestry/files/138028.pdf.

28. Sidle RC, Furuichi T, Kono Y. Unprecedented rates of landslide and surface erosion along a newly constructed road in Yunnan, China. Natural Hazards 2011; 57(2): 313–326. doi: 10.1007/s11069-010-9614-6.

29. de Vente J, Poesen J, Arabkhedri M, Verstraeten G. The sediment delivery problem revisited. Progress in Physical Geography 2007; 31(2): 155–178. doi: 10.1177/0309133307076485.

30. Soni S. Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science 2017; 7(5): 2089–2102. doi: 10.1007/s13201-016-0395-2.

31. Liu Y, Deng Z, Wang X. The effects of rainfall, soil type and slope on the processes and mechanisms of rainfall-induced shallow landslides. Applied Sciences 2021; 11(24): 11652. doi: 10.3390/app112411652.

32. Sime CH, Abebe WT. Sediment yield modeling and mapping of the spatial distribution of soil erosion-prone areas. Applied and Environmental Soil Science 2022; 2022. doi: 10.1155/2022/4291699.

33. Zhang K, Xuan W, Yikui B, Xiuquan X. Prediction of sediment transport capacity based on slope gradients and flow discharge. PLoS One 2021; 16(9): e0256872. doi: 10.1371/journal.pone.0256827.

34. Boukhrissa ZA, Khanchoul K, Le Bissonnais Y, Tourki M. Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment, Algeria. Journal of Earth System Science 2013; 122(5): 1303–1312. doi:10.1007/s12040-013-0347-2.

35. Wu C, Ji C, Shi B, et al. The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin. International Journal of Sediment Research 2019; 34(4): 307–321. doi: 10.1016/j.ijsrc.2019.01.002.

36. Zhang F, Zeng C, Wang G, et al. Runoff and sediment yield in relation to precipitation, temperature and glaciers on the Tibetan Plateau. International Soil and Water Conservation Research 2022; 10(2): 197–207. doi: 10.1016/j.iswcr.2021.09.004.

37. Pronoos Sedighi M, Ramezani Y, Nazeri Tahroudi M, Taghian M. Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions. Acta Geophysica 2023; 71(1): 489–501. doi: 10.1007/s11600-022-00894-5.

38. Ijaz MA, Ashraf M, Hamid S, et al. Prediction of sediment yield in a data-scarce river catchment at the sub-basin scale using gridded precipitation datasets. Water 2022; 14(9): 1480. doi: 10.3390/w14091480.

39. Afonso de Oliveira Serrão E, Silva MT, Ferreira TR, et al. Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. International Journal of Sediment Research 2022; 37(1): 54–69. doi: 10.1016/j.ijsrc.2021.04.002.

40. Admas M, Melesse AM, Abate B, Tegegne G. Soil erosion, sediment yield, and runoff modeling of the megech watershed using the GeoWEPP model. Hydrology 2022; 9(12): 208. doi: 10.3390/hydrology9120208.

41. Mekonnen YA, Mengistu TD, Asitatikie AN, Kumilachew YW. Evaluation of reservoir sedimentation using bathymetry survey: A case study on Adebra night storage reservoir, Ethiopia. Applied Water Science 2022; 12(12): 1–16. doi: 10.1007/s13201-022-01787-0.

42. Endalew L, Mulu A. Estimation of reservoir sedimentation using bathymetry survey at Shumburit earth dam, East Gojjam zone Amhara region, Ethiopia. Heliyon 2022; 8(12): e11819. doi: 10.1016/j.heliyon.2022.e11819.

43. Shrestha P, Janauer GA. Management of aquatic macrophyte resource: A case of Phewa Lake, Nepal. In: Jha PK, Baral SR, Karmacharya SB, et al. (editors). Environment and agriculture: Biodiversity, agriculture and pollution in South Asia. Kathmandu: Ecological Society (ECOS); 2001. p. 99–107.

44. Paudyal K, Baral H, Putzel L, et al. Change in land use and ecosystem services delivery from community-based forest landscape restoration in the Phewa Lake watershed, Nepal. International Forestry Review 2017; 19(4): 88–101. doi: 10.1505/146554817x15168881187636.

45. Paudyal K, Baral H, Bhandari S, et al. Spatial assessment of the impact of land use and land cover change on supply of ecosystem services in Phewa watershed, Nepal. Ecosystem Services 2019; 36:100895. doi: https://doi.org/10.1016/j.ecoser.2019.100895.

46. Government of Nepal (GoN)/United Nations Development Programme (UNDP). Development of ecosystem based sediment control techniques and design of siltation dam to protect Phewa lake. Government of Nepal (GoN)/United Nations Development Programme (UNDP); 2015.

47. Pant RR, Adhikari NL. Water quality assessment of Phewa Lake, Pokhara Nepal. Cognitive Transdisciplinary Research Journal 2015; 1: 130–140.

48. Leibundgut G, Sudmeier-Rieux K, Devkota S, et al. Rural earthen roads impact assessment in Phewa watershed, Western region, Nepal. Geoenvironmental Disasters 2016; 3(13): 1–21. doi:10.1186/s40677-016-0047-8.

49. JICA. Final report for development study on the environmental conservation of Phewa Lake in Pokhara, Nepal [Internet]. Nepal Office, Japan International Cooperation Agency: SILT Consultants (P) Ltd; 2002. Available from: http://open_jicareport.jica.go.jp/619/619/619_116_11688165.html.

50. Watson CS, Kargel JS, Regmi D, et al. Shrinkage of Nepal’s second largest lake (Phewa Tal) due to watershed degradation and increased sediment influx. Remote Sensing 2019; 11(4): 1–17. doi: 10.3390/rs11040444.

51. Department of Soil Conservation. Sedimentation survey of Phewa Lake. Department of Soil Conservation (DSC); Research and Soil Conservation Sections; HMG Ministry of Forest and Soil Conservation: Kathmandu, Nepal, 1994; p. 1–26. Cited by: Watson CS, Kargel JS, Regmi D, et al. Shrinkage of Nepal’s second largest lake (Phewa Tal) due to watershed degradation and increased sediment influx. Remote Sensing 2019; 11(4): 444. doi: 10.3390/rs11040444.

52. Ross J, Gilbert R. Lacustrine sedimentation in a monsoon environment: The record from Phewa Tal, middle mountain region of Nepal. Geomorphology 1999; 27(3–4): 307–323. doi:10.1016/S0169-555X(98)00079-8.

53. Sthapit KM, Balla MK. Sedimentation monitoring of Phewa Lake. Institute of Forestry/International Tropical Timber Organization; 1998.

54. Bhandari KP, Aryal J, Darnsawasdi R. A geospatial approach to assessing soil erosion in a watershed by integrating socio-economic determinants and the RUSLE model. Natural Hazards 2015; 75(1): 321–342. doi: 10.1007/s11069-014-1321-2.

55. Strahler AN. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 1952; 63(11): 1117–1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

56. Horton RE. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 1945; 56(3): 275–370. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

57. Strahler AN. Quantitative geomorphology of drainage basins and channel networks. In: Chow V (editor). Handbook of applied hydrology. New York: McGraw Hill; 1964. p. 439–476.

58. Schumm SA. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin 1956; 67(5): 597–646. doi: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.

59. Horton RE. Drainage-basin characterstics. Transactions, American Geophysical Union.1932; 13(1): 350–361. doi: 10.1029/TR013i001p00350.

60. Schumm SA, Hadley RF. Progress in the application of landform analysis in studies of semiarid erosion. Reston: U.S. Geological Survey; 1961.

61. Schumm SA. Sinuosity of alluvial rivers on the great plains. Geological Society of America Bulletin 1963; 74(9): 1089–1100. doi: 10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2.

62. Asfaw D, Workineh G. Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation. International Soil and Water Conservation Research 2019; 7(2): 150–157. doi: 10.1016/j.iswcr.2019.02.003.

63. Farhan Y, Anbar A, Al-Shaikh N, Mousa R. Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River watershed, Northern Jordan. Agricultural Sciences 2017; 8: 113–148. doi: 10.4236/as.2017.81009.

64. Debelo G, Tadele K, Koriche SA. Morphometric analysis to identify erosion prone areas on the upper blue Nile using GIS (case study of Didessa and Jema Sub-Basin, Ethiopia). International Research Journal of Engineering and Technology 2017; 4(8): 1773–1784.

65. Singh P, Gupta A, Singh M. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science 2014; 17(2): 111–121. doi: 10.1016/j.ejrs.2014.09.003.

66. Withanage NS, Dayawansa NDK, De Silva RP. Morphometric analysis of the Gal Oya River Basin using spatial data derived from GIS. Tropical Agricultural Research 2014; 26(1): 175–188. doi: 10.4038/tar.v26i1.8082.

67. Baral P, Wen Y, Urriola N. Forest cover changes and trajectories in a typical middle mountain watershed of western Nepal. Land 2018; 7(2): 72. doi: 10.3390/land7020072.

68. Vuillez C, Tonini M, Sudmeier-Rieux K, et al. Land use changes, landslides and roads in the Phewa watershed, Western Nepal from 1979 to 2016. Applied Geography 2018; 94: 30–40. doi: 10.1016/j.apgeog.2018.03.003.

69. Quilbé R, Rousseau AN, Moquet JS, et al. Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions. Hydrology and Earth System Sciences 2008; 12(1): 101–110. doi: 10.5194/hess-12-101-2008.




DOI: https://doi.org/10.24294/jgc.v6i1.2184

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Bikesh Jojiju, Rajan Subedi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.