Inventory of dykes and their tectonic environment in S-Algeria, N-Mali and N-Niger based on a GIS embedded comparative analysis of remote sensing data

Barbara Theilen-Willige

Article ID: 2108
Vol 6, Issue 1, 2023

VIEWS - 5618 (Abstract) 167 (PDF)

Abstract


Although dykes are a predominant and widely distributed phenomenon in S-Algeria, N-Mali and N-Niger, a system-atic, standardized inventory of dykes covering these areas has not been published so far. Remote sensing and geo infor-mation system (GIS) tools offer an opportunity for such an inventory. This inventory is not only of interest for the mining industry as many dykes are related to mineral occurrence of economic value, but also for hydrogeologic investigations (dykes can form barriers for groundwater flow). Surface-near dykes, major fault zones, volcanic and structural features were digitized based on Landsat 8 and 9, Sentinel 2, Sentinel 1 and ALOS PALSAR data. High resolution images of World Imagery files/ESRI and Bing Maps Aerial/Microsoft were included into the evaluations. More than 14,000 dykes were digitized and analyzed. The evaluations of satellite images allow a geomorphologic differentiation of types of dykes and the description of their characteristics such as dyke swarms or ring dykes. Dykes are tracing zones of weakness like faults and zones with higher geomechanically strain. Dyke density calculations were carried out in ArcGIS to support the detection of dyke concentrations as stress indicator. Thus, when occurring concentrated, they might indicate stressed areas where further magmatic and earthquake activity might potentially happen in future.

Keywords


Dykes; Remote Sensing; GIS; South-Algeria; North-Mali; North-Niger

Full Text:

PDF


References


1. Mekkaoui A, Remaci-Benaouda N, Graıne-Tazerout K. Mafic dikes at Kahel Tabel-bala (Daoura, Ougarta Range, south-western Al-geria): New insights into the petrology, geo-chemistry and mantle source characteristics. Comptes Rendus Geoscience 2017; 349(5): 202–211. doi: 10.1016/j.crte.2017.06.003.

2. Berraki F, Bendaoud A, Brahimi B, et al. Cartog-raphy and petrographic and mineralogical study of the dolerite dykes of L’In Ouzzal (Hoggar Oc-cidental, Algeria) (French). Photo-Interprétation European Journal of Applied Remote Sensing 2012; (1–2): 26–34.

3. Theilen-Willige B. Detection of ring structures and their surrounding tectonic pattern in South-Algeria, North-Mali and North- Niger based on satellite data. Energy and Earth Science 2023; 6(2): 1–29. doi: 10.22158/ees.v6n2p1.

4. Babikera M, Gudmundsson A. The effects of dykes and faults on groundwater flow in an arid land: The Red Sea Hills, Sudan. Journal of Hy-drology 2004; 297: 256–273. doi: 10.1016/j.jhydrol.2004.04.018.

5. Hou G. Mechanism for three types of mafic dyke swarms. Geoscience Frontiers 2011; 3(2): 217–223. doi: 10.1016/j.gsf.2011.10.003.

6. Bazargan M, Gudmundsson A. Dike-induced stresses and displacements in layered volcanic zones. Journal of Volcanology and Geothermal Research 2019; 384: 189–205. doi: 10.1016/j.jvolgeores.2019.07.010.

7. Maerten F, Maerten L, Plateaux R, Cornard PH. Joint inversion of tectonic stress and magma pressures using dyke trajectories. Geological Magazine 2022; 159 (11–12): 2379–2394. doi: 10.1017/S001675682200067X.

8. Heidbach O, Rajabi M, Reiter K, et al. World stress map database release 2016. V. 1.1. GFZ Da-ta Services; 2016. doi: 10.5880/WSM.2016.001.

9. Burchard HG. Meteorite impact origin of yellow-stone hotspot. Open Journal of Philosophy 2016; 6(4): 412–419. doi: 10.4236/ojpp.2016.64038.

10. Azzouni-Sekkal A, Liegeois JP, Bechi-ri-Benmerzoug F, et al. The “Taourirt” magmatic province, a marker of the closing stage of the Pan-African orogeny in the Tuareg Shield: Re-view of available data and Sr-Nd isotope evi-dence. Journal of African Earth Sciences 2003; 37: 331–350. doi: 10.1016/j.jafrearsci.2003.07.001.

11. Earth Impact Database: Africa. PASSC. Available from: http://passc.net/EarthImpactDatabase/New%20website_05-2018/Index.html.

12. General Bathymetric Chart of the Oceans, GEBCO. Available from: https://www.gebco.net/.

13. English KL, Redfern J, Bertotti G, et al. Intraplate uplift: New constraints on the Hoggar dome from the Illizi basin (Algeria). Basin Research 2016; 29(3): 377–393. doi: 10.1111/bre.12182.

14. Ouzegane K, Liégeois JP, Doukkari S, et al. The Egéré Paleo-Mesoproterozoic rifted passive mar-gin of the LATEA metacraton (Central Hoggar, Tuareg Shield, Algeria) subducted and exhumed during the Pan-African orogeny: U-Pb zircon ages, P-T-t paths, geo-chemistry and Sr-Nd isotopes. Earth-Science Reviews 2023; 236: 104262. doi: 10.1016/j.earscirev.2022.104262.

15. Kourim F, Bodinier JL, Alard O, et al. Nature and evolution of the lithospheric mantle beneath the Hoggar swell (Algeria): A record from mantle xenoliths. Journal of Petrology 2014; 55: 2249–2280. doi: 10.1093/petrology/egu056.

16. OneGeology Portal. British geological survey. Available from: http://portal.onegeology.org/OnegeologyGlobal/.

17. Dostal J, Caby R, Dupuy C. Metamorphosed alkaline intrusions and dyke complexes within the Pan-African Belt of western Hoggar (Algeria): Geology and geochemistry. Precambrian Re-search 1979; 10(1–2): 1–20. doi: 10.1016/0301-9268(79)90016-0.

18. Liégeois JP, Benhallou A, Azzouni-Sekkal A, et al. The Hoggar swell and volcanism: Reactiva-tion of the Precambrian Tuareg shield during Al-pine convergence and West African Cenozoic volcanism. Plates, Plumes, and Paradigms. 2005; 388: 379–400.

19. Liégeois JP, Latouche L, Boughrara M, et al. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): Behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences 2003; 37: 161–190. doi: 10.1016/j.jafrearsci.2003.05.004.

20. Liégeois JP. The Hoggar swell and volcanism, Tuareg shield, Central Sahara: Intraplate reactiva-tion of Precambrian structures as a result of Al-pine convergence. MantlePlumes.org. Available from: http://www.mantleplumes.org/Hoggar.html.

21. Yahiaoui R, Dautria JM, Alard O, et al. A volcan-ic district between the Hoggar uplift and the Tenere Rifts: Volcanology, geochemistry and age of the In-Ezzane lavas (Algerian Sahara). Journal of African Earth Sciences 2014; 92: 14–20. doi: 10.1016/j.jafrearsci.2013.12.001.

22. Bouzid A, Bayou B, Liégeois JP, et al. Litho-spheric structure of the Atakor metacratonic vol-canic swell (Hoggar, Tuareg Shield, southern Al-geria): Electrical constraints from magnetotelluric data. In: Foulger GR, Lustrino M, King SD (edi-tors). The interdisciplinary earth: A volume in honor of Don L. Anderson. Geological Society of America; 2015. p. 239–255.

23. USGS Earth Explorer. Available from: https://earthexplorer.usgs.gov/.

24. European Space Agency (ESA). Copernicus Open Access Hub. Available from: https://scihub.copernicus.eu/dhus/#/home.

25. Alaska Satellite Facility (ASF). Data Search Ver-tex. NASA Earth Data. Available from: https://search.asf.alaska.edu/#/.

26. Bosch D, Bruguier O, Caby R, et al. Orogenic development of the Adrar des Iforas (Tuareg Shield, NE Mali): New geochemical and geo-chronological data and geodynamic implications. Journal of Geodynamics 2016; 96: 104–130. doi: 10.1016/j.jog.2015.09.002.

27. Liégeois JP, Sauvage JF, Black R The Per-mo-Jurassic alkaline province of Tadhak, Mali: Geology, geochronology and tectonic signifi-cance. Lithos 1991; 27: 95–105. doi: 10.1016/0024-4937(91)90022-D.

28. Black R, Bamako H, Ball E, et al. Outline of the Pan-Aftrican Geology of Adrar des Iforas (Repub-lic of Mali). Geologische Rundschau 1979; 68(2): 543–564. doi: 10.1007/BF01820806.

29. Liégeois JP, Black R. Alkaline magmatism sub-sequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). Geological Society Spe-cial Publication1987; 30: 381–401.doi: 10.1144/GSL.SP.1987.030.01.18.

30. Hadj-Kaddour Z, Liégeois JP, Demaiffe D, Caby R. The alkaline–peralkaline granitic post-collisional Tin Zebane dyke swarm (Pan-African Tuareg shield, Algeria): Prevalent mantle signature and late agpaitic differentiation. Lithos 1998; 45: 223–243. doi: 10.1016/S0024-4937(98)00033-4.

31. Boukhalfa Z, Bouzid A, Xu Y, et al. Magnetotel-luric investigation of the Precambrian crust and intraplate Cenozoic volcanism in the Gour Oumelalen area, Central Hoggar, South Algeria. Geophysical Journal International 2020; 223(3): 1973–1986. doi: 10.1093/gji/ggaa432.




DOI: https://doi.org/10.24294/jgc.v6i1.2108

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Barbara Theilen-Willige

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.