Extreme low apparent temperature forecasting for early warning of mortality by data-driven deep learning
Vol 6, Issue 1, 2023
VIEWS - 4773 (Abstract) 1677 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. The Lancet 2015; 386(9991): 369–375. doi: 10.1016/S0140-6736(14)62114-0.
2. Zhao Q, Guo Y, Ye T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. The Lancet Planetary Health 2021; 5(7): e415–e425. doi: 10.1016/S2542-5196(21)00081-4.
3. Cannistraro G, Cannistraro M. Hypothermia risk, monitoring and environment control in operating rooms. International Journal of Heat & Technology 2016; 34(2): 165–171. doi: 10.18280/ijht.340202.
4. Bieler D. 21 die in Chinese ultramarathon suddenly struck by plunging temperatures, wind and hail [Report]. BBC News; 2021.
5. Taskforce G.P.J.I. Investigation report on public safety responsibility incidents of Baiyin Jingtai’s “5.22” Yellow River Stone Forest 100 km cross-country race [Report]. People’s Government of Gansu Province; 2021.
6. Chiu CH, Vagi SJ, Wolkin AF, et al. Evaluation of the National Weather Service extreme cold warning experiment in North Dakota. Weather, Climate, and Society 2014; 6: 22–31. doi: 10.1175/WCAS-D-13-00023.1.
7. Steadman RG. A universal scale of apparent temperature. Journal of Applied Meteorology and Climatology 1984; 23(12): 1674–1687. doi: 10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.
8. Brown DJ, Brugger H, Boyd J, Paal P. Accidental hypothermia. New England Journal of Medicine 2012; 367: 1930–1938. doi: 10.1056/NEJMra1114208.
9. Salman AG, Kanigoro B, Heryadi Y. Weather forecasting using deep learning techniques. In: 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS); 2015 Oct 10–11; Depok. New York: IEEE; 2016. p. 281–285.
10. Shi X, Gao Z, Lausen L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model. Advances in Neural Information Processing Systems 2017; 30: 5622–5632. doi: 10.48550/arXiv.1706.03458.
11. Xu L, Chen N, Chen Z, et al. Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions. Earth-Science Reviews 2021; 222: 103828. doi: 10.1016/j.earscirev.2021.103828.
12. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. doi: 10.1038/nature14539.
13. Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science. Nature 2019; 566: 195–204. doi: 10.1038/s41586-019-0912-1.
14. Xiao C, Chen N, Hu C, et al. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environmental Modelling & Software 2019; 120: 104502. doi: 10.1016/j.envsoft.2019.104502.
15. Zheng G, Li X, Zhang RH, Liu B. Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Science Advances 2020; 6(29): eaba1482. doi: 10.1126/sciadv.aba1482.
16. Ham YG, Kim JH, Luo JJ. Deep learning for multi-year ENSO forecasts. Nature 2019; 573: 568–572. doi: 10.1038/s41586-019-0912-1.
17. Xu L, Chen N, Zhang X, Chen Z. A data-driven multi-model ensemble for deterministic and probabilistic precipitation forecasting at seasonal scale. Climate Dynamics 2020; 54: 3355–3374. doi: 10.1007/s00382-020-05173-x.
18. Hagras H. Toward human-understandable, explainable AI. Computer 2018; 51(9): 28–36. doi: 10.1109/MC.2018.3620965.
19. Zhang Q, Zhu S. Visual interpretability for deep learning: A survey. Frontiers of Information Technology & Electronic Engineering 2018; 19(1): 27–39. doi: 10.1631/FITEE.1700808.
20. Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature 2015; 525: 47–55. doi: 10.1038/nature14956.
21. Slingo J, Palmer T. Uncertainty in weather and climate prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011; 369: 4751–4767. doi: 10.1098/rsta.2011.0161.
22. Wahl S. Uncertainty in mesoscale numerical weather prediction: Probabilistic forecasting of precipitation [PhD thesis]. Bonn: Rheinische Friedrich-Wilhelms-Universität Bonn; 2015.
23. Ayzel G, Scheffer T, Heistermann M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geoscientific Model Development 2020; 13(6): 2631–2644. doi: 10.5194/gmd-13-2631-2020.
24. Ravuri S, Lenc K, Willson M, et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021; 597: 672–677. doi: 10.1038/s41586-021-03854-z.
25. Frame JM, Kratzert F, Klotz D, et al. Deep learning rainfall–runoff predictions of extreme events. Hydrology and Earth System Sciences 2022; 26: 3377–3392. doi: 10.5194/hess-26-3377-2022.
26. Schltz MG, Betancourt C, Gong B, et al. Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 2021; 379(2194): 20200097. doi: 10.1098/rsta.2020.0097.
27. USGS 30 ARC-second global elevation data, GTOPO30 [Report]. USGS Earth Resources Observation and Science (EROS) Center; 1996. doi: 10.5065/A1Z4-EE71.
28. An D, Du Y, Berndtsson R, et al. Evidence of climate shift for temperature and precipitation extremes across Gansu Province in China. Theoretical and Applied Climatology 2020; 139(5): 1137–1149. doi: 10.1007/s00704-019-03041-1.
29. Li C, Wang R. Recent changes of precipitation in Gansu, Northwest China: An index-based analysis. Theoretical and Applied Climatology 2017; 129: 397–412. doi: 10.1007/s00704-016-1783-0.
30. Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 2020; 146(730): 1999–2049. doi: 10.1002/qj.3803.
31. Kingma DP, Ba J. Adam: A method for stochastic optimization. ArXiv 2014; 1412.6980. doi: 10.48550/arXiv.1412.6980.
32. Murphy AH. Climatology, persistence, and their linear combination as standards of reference in skill scores. Weather and Forecasting 1992; 7(4): 692–698. doi: 10.1175/1520-0434(1992)007<0692:CPATLC>2.0.CO;2.
33. Wilks DS. Statistical methods in the atmospheric sciences. Cambridge: Academic press; 2011.
34. Schoof JT, Pryor SC. Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. International Journal of Climatology 2001; 21(7): 773–790. doi: 10.1002/joc.655.
35. Skamarock WC, Klemp JB, Dudhia J, et al. A description of the advanced research WRF version 2 [Report]. National Center for Atmospheric Research Boulder; 2005. doi: 10.5065/D68S4MVH.
36. Kain JS. The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology 2004; 43(1): 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
37. Chen S, Sun W. A one-dimensional time dependent cloud model. Journal of the Meteorological Society of Japan. Ser. II 2002; 80(1): 99–118. doi: 10.2151/jmsj.80.99.
38. NCEP FNL operational model global tropospheric analyses, continuing from July 1999 [Report]. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory; 2000. doi: 10.5065/D6M043C6.
39. Huth R. Statistical downscaling of daily temperature in central Europe. Journal of Climate 2002; 15(13): 1731–1742. doi: 10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2.
40. Cena K, Monteith JL. Transfer processes in animal coats. II. Conduction and convection. Proceedings of the Royal Society of London Series B Biological Sciences 1975; 188(1093): 395–411. doi: 10.1098/rspb.1975.0027.
41. Hanania NA, Zimmerman JL. Accidental hypothermia. Critical Care Clinics 1999; 15(2): 235–249. doi: 10.1016/S0749-0704(05)70052-X.
42. Kang J, Rong Y. Modeling and simulation of load heating in heat treatment furnaces. Journal of Materials Processing Technology 2006; 174(1–3): 109–114. doi: 10.1016/j.jmatprotec.2005.03.037.
43. Bernard V, Staffa E, Mornstein V, Bourek A. Infrared camera assessment of skin surface temperature—Effect of emissivity. Physica Medica 2013; 29(6): 583–591. doi: 10.1016/j.ejmp.2012.09.003.
44. Osczevski RJ. The basis of wind chill. Arctic 1995; 48(4): 372–382. doi: 10.14430/arctic1262.
45. Woodson WE, Tillman B, Tillman P. Human factors design handbook: Information and guidelines for the design of systems, facilities, equipment, and products for human use. New York: McGraw-Hill; 1992. p. 861.
46. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Thermal comfort. In: 2005 ASHRAE handbook: Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.; 2005.
47. Shi R, Zhang J, Fang B, et al. Runners’ metabolomic changes following marathon. Nutrition & Metabolism 2020; 17: 19. doi: 10.1186/s12986-020-00436-0.
48. Frankenfield D, Roth-Yousey L, Compher C, Group EAW. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. Journal of the American Dietetic Association 2005; 105(5): 775–789. doi: 10.1016/j.jada.2005.02.005.
49. Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems; 2015 Dec 7–12; Montreal, Canada. Cambridge: MIT Press; 2015. p. 802–810.
50. Xu L, Chen N, Zhang X, Chen Z. An evaluation of statistical, NMME and hybrid models for drought prediction in China. Journal of Hydrology 2018; 566: 235–249. doi: 10.1016/j.jhydrol.2018.09.020.
51. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 2015; 521: 452–459. doi: 10.1038/nature14541.
52. Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: 33rd International Conference on Machine Learning: PMLR; 2016 Jun 19–24; New York. Cambridge: JMLR; 2016. p. 1050–1059.
53. Fente DN, Singh DK. Weather forecasting using artificial neural network. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT); 2018 Apr 20–21; Coimbatore. New York: IEEE; 2018. p. 1757–1761.
54. Kumar R. Decision tree for the weather forecasting. International Journal of Computer Applications 2013; 76(2): 31–34. doi: 10.5120/13220-0620.
55. Vitart F, Ardilouze C, Bonet A, et al. The subseasonal to seasonal (S2S) prediction project database. Bulletin of the American Meteorological Society 2017; 98(1): 163–173. doi: 10.1175/BAMS-D-16-0017.1.
56. Hewage P, Trovati M, Pereira E, Behera A. Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications 2021; 24(4): 343–366. doi: 10.1007/s10044-020-00898-1.
57. Hossain M, Rekabdar B, Louis SJ, Dascalu S. Forecasting the weather of Nevada: A deep learning approach. In: 2015 International Joint Conference on Neural Networks (IJCNN); 2015 Jul 12–17; Killarney. New York: IEEE; 2015. p. 1–6.
58. Chakraborty S, Tomsett R, Raghavendra R, et al. Interpretability of deep learning models: A survey of results. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation; 2017 Aug 4–8; San Francisco. New York: IEEE; 2017. p. 1–6.
59. Wedi NP, Polichtchouk I, Dueben P, et al. A baseline for global weather and climate simulations at 1 km resolution. Journal of Advances in Modeling Earth Systems 2020; 12(11): e2020M–e2192M. doi: 10.1029/2020MS002192.
DOI: https://doi.org/10.24294/jgc.v6i1.2065
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Lei Xu, Hongchu Yu, Xihao Zhang, Yuan Gan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.