Homogeneity and change point detection of hydroclimatic variables: A case study of the Ghba River Subbasin, Ethiopia

Mehari Gebreyohannes Hiben, Admasu Gebeyehu Awoke, Abraha Adugna Ashenafi

Article ID: 2010
Vol 6, Issue 1, 2023

VIEWS - 394 (Abstract) 138 (PDF)

Abstract


In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.


Keywords


Upper-Tekeza River basin; hydroclimate; change point; homogeneity

Full Text:

PDF


References


1. Polley HW, Bailey DW, Nowak RS, Stafford-Smith M. Ecological consequences of climate change on rangelands. In: Briske D (editor). Rangeland Systems. Cham: Springer, Cham; 2017. p. 229–260.

2. Bijma J, Pörtner HO, Yesson C, Rogers AD. Climate change and the oceans—What does the future hold? Marine Pollution Bulletin 2013; 74(2): 495–505. doi: 10.1016/j.marpolbul.2013.07.022.

3. Dobrowski SZ. A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biology 2011; 17(2): 1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x.

4. Stillman JH. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 2019; 34(2): 86–100. doi: 10.1152/physiol.00040.2018.

5. Harlan SL, Brazel AJ, Prashad L, et al. Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine 2006; 63(11): 2847–2863. doi: 10.1016/j.socscimed.2006.07.030.

6. Djalante R. Key assessments from the IPCC special report on global warming of 1.5 °C and the implications for the Sendai framework for disaster risk reduction. Progress in Disaster Science 2019; 1: 100001. doi: 10.1016/j.pdisas.2019.100001.

7. Change PCJWMO. Global Warming of 1.5 °C [Internet]. Brussels: WeForest; 2018 [accessed 2023 Jul 28]. Available from: https://www.weforest.org/blog/ippc-global-warming-15-c-special-report-6-oct-2018/?gclid=EAIaIQobChMI5d3F0vKwgAMViKKWCh0tZAL7EAAYASAAEgK3uvD_BwE.

8. Warren R, Hope C, Gernaat D, et al. Global and regional aggregate damages associated with global warming of 1.5 to 4 °C above pre-industrial levels. Climatic Change 2021; 168: 24. doi: 10.1007/s10584-021-03198-7.

9. Huntingford C, Williamson MS, Nijsse FJMM. CMIP6 climate models imply high committed warming. Climatic Change 2020; 162(3): 1515–1520. doi: 10.1007/s10584-020-02849-5.

10. Middelkoop H, Daamen K, Gellens D, et al. Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change 2001; 49(1): 105–128. doi 10.1023/A:1010784727448.

11. Zhang Q, Liu J, Singh VP, et al. Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrological Processes 2016; 30(14): 2562–2576. doi: 10.1002/hyp.10814.

12. Cuo L, Zhang Y, Gao Y, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. Journal of Hydrology 2013; 502: 37–52. doi: 10.1016/j.jhydrol.2013.08.003.

13. Nepal S, Shrestha AB. Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: A review of the literature. International Journal of Water Resources Development 2015; 31(2): 201–218. doi: 10.1080/07900627.2015.1030494.

14. Nepal S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. Journal of Hydro-environment Research 2016; 10: 76–89. doi: 10.1016/j.jher.2015.12.001.

15. Graham LP, Andréasson J, Carlsson B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Climatic Change 2007; 81(1): 293–307. doi: 10.1007/s10584-006-9215-2.

16. Lehner B, Döll P, Alcamo J, et al. Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change 2006; 75(3): 273–299. doi: 10.1007/s10584-006-6338-4.

17. Heller NE, Zavaleta ES. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 2009; 142(1): 14–32. doi: 10.1016/j.biocon.2008.10.006.

18. Auffhammer M, Hsiang SM, Schlenker W, Sobel A. Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy 2020; 7(2). doi: 10.1093/reep/ret016.

19. Chase JM, Mcgill BJ, Thompson PL, et al. Species richness change across spatial scales. Oikos 2019; 128(8): 1079–1091. doi: 10.1111/oik.05968.

20. Faghmous JH, Kumar V. A big data guide to understanding climate change: The case for theory-guided data science. Big Data 2014; 2(3): 155–163. doi: 10.1089/big.2014.0026.

21. Wullschleger SD, Gunderson CA, Hanson PJ, et al. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration-interacting variables and perspectives of scale. New Phytologist 2002; 153(3): 485–496. doi 10.1046/j.0028-646X.2001.00333.x.

22. Ren G, Zhou Y, Chu Z, et al. Urbanization effects on observed surface air temperature trends in north China. Journal of Climate 2008; 21(6): 1333–1348. doi: 10.1175/2007JCLI1348.1.

23. Philippart CJM, Anadón R, Danovaro R, et al. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology 2011; 400(1–2): 52–69. doi: 10.1016/j.jembe.2011.02.023.

24. Addisu S, Selassie YG, Fissha G, Gedif B. Time series trend analysis of temperature and rainfall in lake Tana Sub-basin, Ethiopia. Environmental Systems Research 2015; 4(25): 1–12. doi: 10.1186/s40068-015-0051-0.

25. Asfaw A, Simane B, Hassen A, Bantider A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes 2018; 19: 29–41. doi: 10.1016/j.wace.2017.12.002.

26. Kahsay HT, Guta DD, Birhanu BS, Gidey TG. Farmers’ perceptions of climate change trends and adaptation strategies in semiarid highlands of Eastern Tigray, Northern Ethiopia. Climate Risk Assessment, Coping, and Adaptation 2019; 2019. doi: 10.1155/2019/3849210.

27. Worku G, Teferi E, Bantider A, Dile YT. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theoretical and Applied Climatology 2019; 135(3): 839–854. doi: 10.1007/s00704-018-2412-x.

28. Williams AP, Funk C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics 2011; 37(11): 2417–2435. doi: 10.1007/s00382-010-0984-y.

29. Daron JD. Regional climate messages for East Africa. Rondebosch: Climate System Analysis Group; 2014.

30. Pascual M, Ahumada JA, Chaves LF, et al. Malaria resurgence in the East African highlands: Temperature trends revisited. Biological Scienves 2006; 103(15): 5829–5834. doi: 10.1073/pnas.0508929103.

31. Funk C, Peterson P, Landsfeld M, et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data 2015; 2(150066). doi: 10.1038/sdata.2015.66.

32. Almazroui M, Nazrul Islam M, Athar H, et al. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. International Journal of Chimatology 2012; 32(6): 953–966. doi: 10.1002/joc.3446.

33. Almazroui M. Simulation of present and future climate of Saudi Arabia using a regional climate model (PRECIS). International Journal of Chimatology 2013; 33(9): 2247–2259. doi: 10.1002/joc.3721.

34. Almazroui M. Rainfall trends and extremes in Saudi Arabia in recent decades. Atmosphere 2020; 11(9): 964. doi: 10.3390/atmos11090964.

35. Alsubih M, Mallick J, Talukdar S, et al. An investigation of the short-term meteorological drought variability over Asir Region of Saudi Arabia. Theoretical and Applied Climatology 2021; 145(1): 597–617. doi: 10.1007/s00704-021-03647-4.

36. Wang B, Zhang M, Wei J, et al. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quaternary International 2013; 298: 141–151. doi: 10.1016/j.quaint.2012.09.010.

37. Tian J, Liu J, Wang J, et al. Trend analysis of temperature and precipitation extremes in major grain producing area of China. International Journal of Chimatology 2017; 37(2): 672–687. doi: 10.1002/joc.4732.

38. Liu Y, Lei H. Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sensing 2015; 7(8): 10243–10268. doi: 10.3390/rs70810243.

39. Khaliq MN, Ouarda TBMJ, Ondo JC, et al. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology 2006; 329(3–4): 534–552. doi: 10.1016/j.jhydrol.2006.03.004.

40. Wu Z, Xie P, Sang YF, et al. Moving correlation coefficient-based method for jump points detection in hydroclimate time series. Stochastic Environmental Research and Risk Assessment 2019; 33(10): 1751–1764. doi: 10.1007/s00477-019-01727-6.

41. Zhang S, Zhang H, Li J, Li J. Agct: A hybrid model for identifying abrupt and gradual change in hydrological time series. Environmental Earth Sciences 2019; 78(15): 433. doi: 10.1007/s12665-019-8453-3.

42. Das J, Mandal T, Saha P. Spatio-temporal trend and change point detection of winter temperature of North Bengal, India. Spatial Information Research 2019; 27(4): 411–424. doi: 10.1007/s41324-019-00241-9.

43. Akbari S, Reddy MJ. Non-stationarity analysis of flood flows using copula based change-point detection method: Application to case study of Godavari river basin. Science of The Total Environment 2020; 718: 134894. doi: 10.1016/j.scitotenv.2019.134894.

44. Salarijazi M, Akhond-Ali AM, Adib A, Daneshkhah A. Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research 2012; 7(32): 4540–4552. doi: 10.5897/AJAR12.650.

45. Orke YA, Li MH. Hydroclimatic variability in the bilate watershed, Ethiopia. Climate 2021; 9(6): 98. doi: 10.3390/cli9060098.

46. Ilori OW, Ajayi VO. Change detection and trend analysis of future temperature and rainfall over West Africa. Earth Systems and Environment 2020; 4(3): 493–512. doi: 10.1007/s41748-020-00174-6.

47. Villarini G, Serinaldi F, Smith JA, Krajewski WF. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research 2009; 45(8). doi: 10.1029/2008WR007645.

48. Suhaila J, Yusop Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics 2018; 130(5): 565–581. doi: 10.1007/s00703-017-0537-6.

49. Letzgus S. Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models. Wind Energy Science 2020; 5(4): 1375–1397. doi: 10.5194/wes-5-1375-2020.

50. Tesema FW, Kahsay GH, Berhe BA. Quantitative geomorphological parameters analysis for the aynalem-illala streams, tigray, Northern Ethiopia. Momona Ethiopian Journal of Science 2021; 13(1): 67–88. doi: 10.4314/mejs.v13i1.4.

51. Gebremeskel G, Kebede A. Estimating the effect of climate change on water resources: Integrated use of climate and hydrological models in the Werii watershed of the Tekeze river basin, Northern Ethiopia. Agriculture and Natural Resources 2018; 52(2): 195–207. doi: 10.1016/j.anres.2018.06.010.

52. Annys S, Ghebreyohannes T, Nyssen J. Impact of hydropower dam operation and management on downstream hydrogeomorphology in semi-arid environments (Tekeze, Northern Ethiopia). Water 2020; 12(8): 2237. doi: 10.3390/w12082237.

53. Walraevens K, Camp MV, Vandecasteele I, et al. Hydrological context of water scarcity and storage on the mountain ridges in Dogu’a Tembien. In: Nyssen J, Jacob M, Frankl A (editors). Geo-trekking in Ethiopia’s Tropical Mountains. Cham: Springer, Cham; 2019. p. 197–213.

54. Gebremicael TG, Mohamed YA, Betrie GD, et al. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology 2013; 482: 57–68. doi: 10.1016/j.jhydrol.2012.12.023.

55. Hiben MG, Awoke AG, Ashenafi AA. Hydroclimatic variability, characterization, and long term spacio-temporal trend analysis of the Ghba River Subbasin, Ethiopia. Advances in Meteorology 2022; 2022: 3594641. doi: 10.1155/2022/3594641.

56. Gebremicael TG, Mohamed YA, Hagos EY, Zaag PV. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē—Atbara river basin, Ethiopia. Hydrology and Earth System Sciences 2017; 21(4): 2127–2142. doi: 10.5194/hess-21-2127-2017.

57. Gebremicael TG, Mohamed YA, Van der Zaag P. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of the Total Environment 2019; 660: 1155–1167. doi: 10.1016/j.scitotenv.2019.01.085.

58. Hiben MG, Awoke AG, Ashenafi AA. Estimation of current water use over the complex topography of the Nile Basin Headwaters: The case of Ghba Subbasin, Ethiopia. Advances in Civil Engineering 2022; 2022: 1–14. doi: 10.1155/2022/7852100.

59. Nyssen J, Frankl A, Zenebe A, et al. Land management in the northern Ethiopian highlands: Local and global perspectives; past, present and future. Land Degradation & Development 2015; 26(7): 759–764. doi: 10.1002/ldr.2336.

60. Nyssen J, Tielens S, Gebreyohannes T, et al. Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia’s tropical mountains. PLoS One 2019; 14(10): e0224041. doi: 10.1371/journal.pone.0224041.

61. Alhamshry A, Fenta AA, Yasuda H, et al. Seasonal rainfall variability in Ethiopia and its long-term link to global sea surface temperatures. Water 2019; 12(1): 55. doi: 10.3390/w12010055.

62. Negash E, Getachew T, Birhane E, Gebrewahed H. Ecosystem service value distribution along the agroecological gradient in north-central Ethiopia. Earth Systems and Environment 2020; 4(1): 107–116. doi: 10.1007/s41748-020-00149-7.

63. Tesfaye S, Taye G, Birhane E, van der Zee SEATM. Observed and model simulated twenty-first century hydro-climatic change of northern Ethiopia. Journal of Hydrology: Regional Studies 2019; 22: 100595. doi: 10.1016/j.ejrh.2019.100595.

64. Arias PA, Garreaud R, Poveda G, et al. Hydroclimate of the andes part II: Hydroclimate variability and sub-continental patterns. Frontiers in Earth Science 2021; 8: 505467. doi: 10.3389/feart.2020.505467.

65. Saranya P, Krishnakumar A, Sinha N, et al. Isotopic signatures of moisture recycling and evaporation processes along the Western Ghats orography. Atmospheric Research 2021; 264: 105863. doi: 10.1016/j.atmosres.2021.105863.

66. Mann DH, Groves P, Reanier RE, Kunz ML. Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska? Quaternary Science Reviews 2010; 29(27–28): 3812–3830. doi: 10.1016/j.quascirev.2010.09.002.

67. Kahsay KD. Estimating the effect of climate change on groundwater recharge and base flow in Tekeze Sub Catchment, Tekeze River Basin, Ethiopia [Master’s thesis]. Addis Ababa: Addis Ababa University; 2017.

68. Reda DT, Engida AN, Asfaw DH, Hamdi R. Analysis of precipitation based on ensembles of regional climate model simulations and observational databases over Ethiopia for the period 1989–2008. International Journal of Chimatology 2015; 35(6): 948–971. doi: 10.1002/joc.4029.

69. Gebrehiwot T, van der Veen A. Assessing the evidence of climate variability in the northern part of Ethiopia. Journal of Development and Agricultural Economics 2013; 5(3): 104–119. doi: 10.5897/JDAE12.056.

70. Mohammed Y, Yimer F, Tadesse M, Tesfaye K. Variability and trends of rainfall extreme events in north east highlands of Ethiopia. International Journal of Hydrology 2018; 2(5): 594–605. doi: 10.15406/ijh.2018.02.00131.

71. Nyssen J, Vandenreyken H, Poesen J, et al. Rainfall erosivity and variability in the northern Ethiopian highlands. Journal of Hydrology 2005; 311(1–4): 172–187. doi: 10.1016/j.jhydrol.2004.12.016.

72. Degefu MA, Alamirew T, Zeleke G, Bewket W. Detection of trends in hydrological extremes for Ethiopian watersheds, 1975–2010. Regional Environmental Change 2019; 19(7): 1923–1933. doi: 10.1007/s10113-019-01510-x.

73. Daba MH, Ayele GT, You S. Long-term homogeneity and trends of hydroclimatic variables in Upper Awash River Basin, Ethiopia. Advances in Meteorology 2020; 2020: 8861959. doi: 10.1155/2020/8861959.

74. Mubialiwo A, Onyutha C, Abebe A. Historical rainfall and evapotranspiration changes over Mpologoma catchment in Uganda. Advances in Meteorology 2020; 2020: 8870935. doi: 10.1155/2020/8870935.

75. Pawar U, Karunathilaka P, Rathnayake U. Spatio-temporal rainfall variability and concentration over Sri Lanka. Advances in Meteorology 2022; 2022: 6456761. doi: 10.1155/2022/6456761.

76. ENMSA. Ethiopian National Meteorological Services Agency, Climate Data. Addis Ababa: ENMSA; 2021.

77. Tadese MT, Kumar L, Koech R, Zemadim B. Hydro-climatic variability: A characterisation and trend study of the Awash River Basin, Ethiopia. Hydrology 2019; 6(2): 35. doi: 10.3390/hydrology6020035.

78. Kang HM, Yusof F. Homogeneity tests on daily rainfall series. International Journal of Contemporary Mathematical Sciences 2012; 7(1): 9–22.

79. Shen L, Lu L, Hu T, et al. Homogeneity test and correction of daily temperature and precipitation data (1978–2015) in north China. Advances in Meteorology 2018; 2018: 4712538. doi: 10.1155/2018/4712538.

80. Edwards PN. A vast machine: Computer models, climate data, and the politics of global warming. Cambridge: The Mit Press; 2013.

81. Fathian F, Morid S, Kahya E. Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology 2015; 119(3): 443–464. doi: 10.1007/s00704-014-1120-4.

82. Alexandersson H. A homogeneity test applied to precipitation data. International Journal of Climatology 1986; 6(6): 661–675. doi: 10.1002/joc.3370060607.

83. Latif Y, Yaoming M, Yaseen M, et al. Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan. Theoretical and Applied Climatology 2020; 139(1): 741–758. doi: 10.1007/s00704-019-02993-8.

84. Khaliq MN, Ouarda TBJ. On the critical values of the standard normal homogeneity test (SNHT). International Journal of Climatology 2007; 27(5): 681–687. doi: 10.1002/joc.1438.

85. Ribeiro S, Caineta J, Costa AC, et al. Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmospheric Research 2016; 171: 147–158. doi: 10.1016/j.atmosres.2015.11.014.

86. Diodato N, Bertolin C, Bellocchi G, et al. New insights into the world’s longest series of monthly snowfall (Parma, Northern Italy, 1777–2018). International Journal of Climatology 2021; 41(S1): E1270–E1286. doi: 10.1002/joc.6766.

87. Alexandersson H, Moberg A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology 1997; 17(1): 25–34. doi: 10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J.

88. Elzeiny R, Khadr M, Zahran S, Rashwan E. Homogeneity analysis of rainfall series in the upper blue nile river basin, Ethiopia. Journal of Engineering Research 2019; 3: 46–53. doi: 10.21608/erjeng.2019.125704.

89. Buishand TA. Tests for detecting a shift in the mean of hydrological time series. Journal of Hydrology 1984; 73(1–2): 51–69. doi: 10.1016/0022-1694(84)90032-5.

90. Che Ros F, Tosaka H, Sidek LM, Basri H. Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management 2016; 14(2): 151–163. doi: 10.1080/15715124.2015.1105233.

91. Kocsis T, Kovács-Székely I, Anda A. Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology 2020; 139(3): 849–859. doi: 10.1007/s00704-019-03014-4.

92. Camuffo D, della Valle A, Becherini F, Zanini V. Three centuries of daily precipitation in Padua, Italy, 1713–2018: History, relocations, gaps, homogeneity and raw data. Climatic Change 2020; 162(2): 923–942. doi: 10.1007/s10584-020-02717-2.

93. Buishand TA. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology 1982; 58(1–2): 11–27. doi: 10.1016/0022-1694(82)90066-X.

94. Militino AF, Moradi M, Ugarte MD. On the performances of trend and change-point detection methods for remote sensing data. Remote Sensing 2020; 12(6): 1008. doi: 10.3390/rs12061008.

95. Mallakpour I, Villarini GJHSJ. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal 2016; 61(2): 245–254. doi: 10.1080/02626667.2015.1008482.

96. Ono T. Statistical evaluation of rapid biochemical oxygen demand test for monitoring municipal wastewater quality [Master’s thesis]. Regina: The University of Regina; 2013.

97. Ahmad NH, Deni SMJM. Homogeneity test on daily rainfall series for Malaysia. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics 2013; 29: 141–150. doi: 10.11113/matematika.v29.n.586.

98. Klein Tank AMG, Wijngaard JB, Können GP, et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. International Journal of Climatology 2002; 22(12): 1441–1453. doi: 10.1002/joc.773.

99. Bingham C, Nelson LS. An approximation for the distribution of the von Neumann ratio. Technometrics 1981; 23(3): 285–288.

100. Wijngaard JB, Klein Tank AMG, Können GP. Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 2003; 23(6): 679–692. doi: 10.1002/joc.906.

101. Tan ML, Samat N, Chan NW, et al. Analysis of precipitation and temperature extremes over the muda river basin, Malaysia. Water 2019; 11(2): 283. doi: 10.3390/w11020283.

102. Lin NJ, Abd Aziz S, Feng HY, et al. Homogeneity analysis of rainfall in Kelantan, Malaysia. Jurnal Teknologi 2015; 76(15). doi: 10.11113/jt.v76.5944.

103. Khalil A. Inhomogeneity detection in the rainfall series for the Mae Klong River Basin, Thailand. Applied Water Science 2021; 11(9): 147. doi: 10.1007/s13201-021-01474-6.

104. AL-Lami AM, AL-Timimi YK, AL-Salihi AM. The homogeneity analysis of rainfall time series for selected meteorological stations in Iraq. Diyala Journal for Pure Sciences 2014; 10(2): 60–77.

105. Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D, Medjerab A. Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in western Algeria. Natural Hazards 2013; 65(3): 1293–1311. doi: 10.1007/s11069-012-0411-2.

106. Wang H, Zhang M, Zhu H, et al. Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang River Basin, NW China. Catena 2012; 95: 33–41. doi: 10.1016/j.catena.2012.03.003.

107. Ryberg KR, Hodgkins GA, Dudley RW. Change points in annual peak streamflows: Method comparisons and historical change points in the United States. Journal of Hydrology 2020; 583: 124307. doi: 10.1016/j.jhydrol.2019.124307.

108. Wang W, Shao Q, Yang T, et al. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrological Processes 2013; 27(8): 1158–1174. doi: 10.1002/hyp.9299

109. Slater LJ, Anderson B, Buechel M, et al. Nonstationary weather and water extremes: A review of methods for their detection, attribution, and management. Hydrology and Earth System Sciences 2021; 25(7): 3897–3935. doi: 10.5194/hess-25-3897-2021.

110. Gebremicael T. Understanding the impact of human interventions on the hydrology of Nile Basin headwaters, the case Of Upper Tekeze Catchments. Boca Raton: CRC Press; 2019.

111. Araya A, Kisekka I, Girma A, et al. The challenges and opportunities for wheat production under future climate in northern Ethiopia. The Journal of Agricultural Science 2017; 155(3): 379–393. doi: 10.1017/S0021859616000460.

112. Weldegebriel SK, Yeshitela K. The dynamics of land use land cover and its driving forces in Mekelle city region, Ethiopia. Asian Review of Environmental and Earth Sciences 2021; 8(1): 18–29. doi: 10.20448/journal.506.2021.81.18.29.




DOI: https://doi.org/10.24294/jgc.v6i1.2010

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution 4.0 International License.