Density estimation of the main structuring sessile species in underwater marine caves with a deep learning approach
Vol 6, Issue 1, 2023
VIEWS - 453 (Abstract) 254 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Gerovasileiou V, Bianchi CN. Mediterranean marine caves: A synthesis of current knowledge. Boca Raton: CRC Press; 2021. p. 87.
2. Navarro-Barranco C, Ambroso S, Gerovasileiou V, et al. Conservation of dark habitats. In: Espinosa F (editor). Anonymous coastal habitat conservation. Cambridge: Academic Press; 2023. p. 147–170.
3. Gerovasileiou V, Voultsiadou E. Marine caves of the Mediterranean Sea: A sponge biodiversity reservoir within a biodiversity hotspot. PLoS One 2012; 7(7): e39873. doi: 10.1371/journal.pone.0039873.
4. Montefalcone M, De Falco G, Nepote E, et al. Thirty year ecosystem trajectories in a submerged marine cave under changing pressure regime. Marine Environmental Research 2018; 137: 98–110. doi: 10.1016/j.marenvres.2018.02.022.
5. Gerovasileiou V, Trygonis V, Sini M, et al. Three-dimensional mapping of marine caves using a handheld echosounder. Marine Ecology Progress Series 2013; 486: 13–22. doi: 10.3354/meps10374.
6. Quiles-Pons C, Baena I, Calvo-Manazza M, et al. Monitoring the complex benthic habitat on semi-dark underwater marine caves using photogrammetry-based 3D reconstructions. In: Proceedings of 3rd Mediterranean Symposium on the Conservation of the Dark Habitats; 2022 Sep 21–22; Genoa. Palma De Mallorca: Centro Oceanográfico de Baleares; 2022.
7. Dimarchopoulou D, Gerovasileiou V, Voultsiadou E. Spatial variability of sessile benthos in a semi-submerged marine cave of a remote Aegean Island (eastern Mediterranean Sea). Regional Studies in Marine Science 2018; 17: 102–111. doi: 10.1016/j.rsma.2017.11.015.
8. Er MJ, Chen J, Zhang Y, Gao W. Research challenges, recent advances, and popular datasets in deep learning-based underwater marine object detection: A review. Sensors 2023; 23(4): 1990. doi: 10.3390/s23041990.
9. Mohamed H, Nadaoka K, Nakamura T. Automatic semantic segmentation of benthic habitats using images from towed underwater camera in a complex shallow water environment. Remote Sensing 2022; 14(8): 1818. doi: 10.3390/rs14081818.
10. Abad-Uribarren A, Prado E, Sierra S, et al. Deep learning-assisted high-resolution mapping of vulnerable habitats within the Capbreton Canyon System, Bay of Biscay. Estuarine, Coastal and Shelf Science 2022; 275: 107957. doi: 10.1016/j.ecss.2022.107957.
11. Pierce JP, Rzhanov Y, Lowell K, Dijkstra JA. Reducing annotation times: Semantic segmentation of coral reef survey images. In: Proceedings of Global Oceans 2020: Singapore–U.S. Golf Coast; 2020 Oct 5–30; Biloxi. New York: IEEE; 2020. p. 1–9.
12. Stobart B, Díaz D, Álvarez F, et al. Performance of baited underwater video: Does it underestimate abundance at high population densities? PLoS One 2015; 10(5): e0127559. doi: 10.1371/journal.pone.0127559.
13. Zhang S, Zhao S, An D, et al. Visual SLAM for underwater vehicles: A survey. Computer Science Review 2022; 46: 100510. doi: 10.1016/j.cosrev.2022.100510.
14. Lindeberg T. Scale invariant feature transform. Scholarpedia 2012; 7(5): 10491. doi: 10.4249/scholarpedia.10491.
15. Moreno-Barea FJ, Jerez JM, Franco L. Improving classification accuracy using data augmentation on small data sets. Expert Systems with Applications 2020; 161: 113696. doi: 10.1016/j.eswa.2020.113696.
16. Han F, Yao J, Zhu H, Wang C. Underwater image processing and object detection based on deep CNN method. Journal of Sensors 2020; 2020. doi: 10.1155/2020/6707328.
17. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (editors). Proceedings of Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference; 2015 Oct 5–9; Munich. Cham: Springer International Publishing; 2015. p. 234–241.
18. Zhang H, Wu C, Zhang Z, et al. ResNeSt: Split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops; 2022 Jun 19–20; New Orleans. New York: IEEE; 2022. p. 2736–2746.
19. Liu Z, Mao H, Wu C, et al. A ConvNet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022 Jun 18–24; New Orleans. New York: IEEE; 2022. p. 11976–11986.
20. Gulati M. How to choose evaluation metrics for classification models [Internet]. Gurgaon: Analytics Vidhya; 2020 [updated 2020 Oct 11]. Available from: https://www.analyticsvidhya.com/blog/2020/10/how-to-choose-evaluation-metrics-for-classification-model/.
21. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision; 2017 Oct 22–29; Venice. New York: IEEE; 2018. p. 2961–2969.
DOI: https://doi.org/10.24294/jgc.v6i1.1980
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Sergio Sierra, Elena Prado, Luis Rodríguez-Cobo, Carla Quiles-Pons, Pablo Roldán-Varona, David Díaz-Viñolas, Pedro Anuarbe-Cortés, Adolfo Cobo, Francisco Sánchez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.