GIS and geomorphological mapping applied to landslide inventory and susceptibility mapping in the El Estado River basin, Pico de Ori-zaba, Mexico

José Fernando Aceves Quesada, Legorreta Paulín Gabrie, José Lugo Hubp, Juan Umaña Romero, Héctor Alfredo Legorreta Cuevas

Article ID: 1762
Vol 5, Issue 1, 2022

VIEWS - 1630 (Abstract) 1495 (PDF)

Abstract


With the purpose of strengthening the knowledge and prevention of landslide disasters, this work develops a methodology that integrates geomorphological mapping with the elaboration of landslide susceptibility maps using geographic information systems (GIS) and the multiple logistic regression method (MLR). In Mexico, some isolated works have been carried out with GIS to evaluate slope stability. However, to date, no practical and standardized method has been developed to integrate geomorphological maps with landslide inventories using GIS. This paper shows the analysis carried out to develop a multitemporal landslide inventory together with the morphometric analysis and mapping technique for the El Estado River basin where, selected as the study area, is located on the southwestern slope of the Citlaltepetl or Pico de Orizaba volcano. The geological and geomorphological factors in combination with the high seasonal precipitation, the high degree of weathering and the steep slopes predispose its surfaces to landslides. To assess landslide susceptibility, a landslide inventory map was prepared using aerial photographs, followed by geomorphometric mapping (altimetry, slopes and geomorphology) and field work. With this information, landslide susceptibility was modeled using multiple logistic regression (MLR) within a GIS platform and the landslide susceptibility map was obtained.


Keywords


GIS; Geomorphological Mapping; Landslide Inventory Map; Landslide Susceptibility Map; Multiple Logistic Re-gression; Pico de Orizaba Volcano

Full Text:

PDF


References


1. Legorreta PG, Bursik M, Ramírez-Herrera MT, et al. Landslide inventory mapping and landslide susceptibility modeling assessment on the SW flank of Pico de Orizaba volcano, Puebla-Veracruz, Mexico. Zeitschrift für Geomorphologie 2013; 57(3): 371–385.

2. Siebe C, Komorowski JC, Sheridan MF. Morphology and emplacement of an unusual de-bris-avalanche deposit at Jocotitlán volcano, Central Mexico. Bulletin of Volcanology 1992; 54(7): 573–589.

3. Siebe C, Abrams M, Sheridan MF. Major Holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, México: Implications for future hazards. Journal of Volcanology and Geothermal Research 1993; 59(1–2): 1–33.

4. Capra L, Macıas JL, Scott KM, et al. Debris avalanches and debris flows transformed from collaps-es in the Trans-Mexican Volcanic Belt, Mexi-co—Behavior, and implications for hazard assessment. Journal of Volcanology and Geothermal Re-search 2002; 113(1–2): 81–110.

5. Korup O, McSaveney MJ, Davies TRH. Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geo-morphology 2004; 61(1–2): 189–207.

6. Montgomery DR, Dietrich WE. A physically based model for the topographic control on shallow landsliding. Water Resources Research 1994; 30(4): 1153–1171.

7. Washington State Department of Natural Resources (DNR). Forest Practices Division (2006) Landslide Hazard Zonation (LHZ) Mapping Protocol, version 2.0. Available from: http://www.dnr.wa.gov/BusinessPermits/Topics/LandslideHazardZonation/Pages/fp_lhz_review.aspx.

8. Hervás J, Bobrowsky P. Mapping: Inventories, susceptibility, hazard and risk. In: Landslides–disaster risk reduction. Heidelberg, Berlin: Springer; 2009. p. 321–349.

9. Blahut J, Van Westen CJ, Sterlacchini S. Analysis of landslide inventories for accurate prediction of debrisflow source areas. Geomorphology 2010; 119(1–2): 36–51.

10. Capra L, Hubp JL, Hernández ND. Mass removal phenomena in the town of Zapotitlan de Méndez, Puebla: relationship between lithology and type of movement (in Spanish). Revista Mexicana de Ciencias Geológicas 2003; 20(2): 95–106.

11. Pérez-Gutiérrez R. Vulnerability analysis for mass landslides: the case of Tlacuitlapa, Guerrero. Boletín de la Sociedad Geológica Mexicana 2007; 59(2): 171–181.

12. Secretaría de Protección Civil. Atlas of geological and hydrometeorological hazards of the state of Veracruz, Ignacio Mora González, Wendy Morales Barrera and Sergio Rodríguez Elizarrarás (comps.) (in Spanish). Mexico: Secretaría de Protección Civil del Estado de Veracruz, Universidad Veracruzana, UNAM; 2010.

13. Verstappen HT, Zuidam RA, Meijerink AMJ, et al. The ITC system of geomorphology survey: A basis for the evaluation of natural resources and hazards. Holland: ITC Publication; 1991. p. 89.

14. Tapia-Varela G, López-Blanco J. Analytical geomorphological mapping of the central portion of the Basin of Mexico: Morphogenetic units at a scale of 1:100,000 (in Spanish). Revista Mexicana de Ciencias Geológicas 2002; 19(1): 50–65.

15. Salinas-Sánchez S. Morphogenetic Mapping and Quantitative Analysis of the Jocotitlán Volcano Avalanche Deposit, State of Mexico (in Spanish) [BSc thesis]. México: Facultad de Filosofía y Letras, Colegio de Geografía, UNAM; 2005.

16. Aceves-Quesada FG, Legorreta-Paulín, Álvarez Ruíz Y. Gravitational processes on the eastern flank of the Nevado de Toluca, México. Zeitschrift für Geomorphologie 2014; 58(2): 185–200.

17. Aceves-Quesada FG, Legorreta-Paulín, Álvarez Ruíz Y. Geomorphologic mapping for the inventory of gravitational processes in the endorrheic basin of the La Ciénega gulch, Eastern flank of the Nevado de Toluca volcano. Boletín de la Sociedad Geológica Mexicana 2014; 66(2): 329–342.

18. Carrasco-Núñez G, Vallance JW, Rose WI. A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: Implications for hazard assessment. Journal of Volcanology and Geothermal Re-search 1993; 59(1–2): 35–46.

19. Carrasco-Núñez G, Rose WI. Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. Journal of Volcanology and Geothermal Research 1995; 69(3–4): 197–215.

20. De la Cruz-Reyna S, Carrasco-Núñez G. Probabilistic hazard analysis of Citlaltepetl (Pico de Orizaba) volcano, eastern Mexican volcanic belt. Journal of Volcanology and Geothermal Research 2002; 113(1–2): 307–318.

21. Macías JL. Geology and eruptive history of some active volcanoes of México. Boletín de la Sociedad Geológica Mexicana 2005; 57(3): 379–424.

22. Sheridan M, Carrasco-Nuñez FG, Hubbard BE. Citlaltépetl Volcano hazard map (Pico de Orizaba) (in Spanish). Instituto de Geofísca, Universidad Nacional Autónoma Mexico; 2001. scale: 1:250,000.

23. Hubbard BE, Sheridan MF, Carrasco-Núñez G, et al. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. Journal of Volcanology and Geothermal Research 2007; 160(1–2): 99–124.

24. Angeli MG, Pasuto A, Silvano S. A critical review of landslide monitoring experiences. Engineering Geology 2000; 55(3): 133–147.

25. Galli M, Ardizzone F, Cardinali M, et al. Comparing landslide inventory maps. Geomorphology 2008; 94(3–4): 268–289.

26. Weirich F, Blesius L. Comparison of satellite and air photo-based landslide susceptibility maps. Geomorphology 2007; 87(4): 352–364.

27. Ohlmacher GC, Davis JC. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology 2003 69(3–4): 331–343.

28. Can T, Nefeslioglu HA, Gokceoglu C, et al. Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 2005; 72(1–4): 250–271.

29. Pedraza-Gilsanz J. Geomorphology: Principles, methods and applications (in Spanish). In: Edward Rueda. 1996. p. 414.

30. Van Zuidam RA. Aerial photo-interpretation in terrain analysis and geomorphologic mapping. La Haya, Holanda: Smits Publishers; 1986. p. 442.

31. Cruden DM, Varnes D. Landslide types and processes. In: Turner AK, Shuster RL (editors). Landslides: Investigation and mitigation. Transp. Res. Board, Spec. Rep; 1996. p. 36–75.

32. Wieczorek GF. Preparing a detailed land-slide-inventory map for hazard evaluation and reduction. Bulletin of the Association of Engineering Geologists 1984; 21(3): 337–342.

33. Pallant J. SPSS survival manual: A step by step guide to data analysis using SPSS for Windows (Version 12). Buckingham: Open University Press; 2005. p. 319.

34. Legorreta PG, Bursik M. Assessment of landslides susceptibility: LOGISNET: A tool for multimethod, multilayer slope stability analysis. VDM Verlag; 2009. p. 360.

35. Legorreta PG, Bursik M, Lugo-Hubp J, et al. Effect of pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral effects on the forecasting of landslides by SINMAP and Multiple Logistic Regression landslide models. Physics and Chemistry of the Earth, Parts A/B/C 2010; 35(3–5): 137–148.

36. Kleinbaum DG, Klein M. Logistic regression: A self-learning text. 2nd ed. New York: Springer; 2002. p. 513.

37. Dai FC, Lee CF, Ngai YY. Landslide risk assessment and management: An overview. Engineering Geology 2002; 64(1): 65–87.

38. Van Den Eeckhaut M, Poesen J, Verstraeten G, et al. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 2005; 67(3–4): 351–363.




DOI: https://doi.org/10.24294/jgc.v5i1.1762

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 José Fernando Aceves Quesada, Gabrie Legorreta Paulín, José Lugo Hubp, Juan Umaña Romero, Héctor Alfredo Legorreta Cuevas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.