Dendroclimatic analysis and cartographic modeling of the climatic response of Fagus sylvatica during growth in a sector of the central Cantabrian Mountains
Vol 5, Issue 2, 2022
VIEWS - 285 (Abstract) 209 (PDF)
Abstract
The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
Keywords
Full Text:
PDFReferences
1. Peñuelas J, Boada M. A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology 2003; 9(2): 131–140. doi: 10.1046/j.1365-2486.2003.00566.x.
2. Gutiérrez E. Dendrochronology: Methods and applications (in Spanish). In: Nieto X, Cau MA (editors). Arqueologia nautica mediterrània Monografies del CASC. Generalitat de Catalunya; 2009. p. 309–322.
3. Gottfried M, Pauli H, Futschik A, et al. Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2012; 2(2): 111–115. doi: 10.1038/nclimate1329.
4. Hughes MK, Swetnam TW, Diaz HF (editors). Dendroclimatology: Progress and prospects. Dordrecht: Springer; 2011.
5. Fritts HC. Tree rings and climate. London: Academic Press; 2012.
6. Schweingruber FH. Anatomy of European woods. An atlas for the identification of European trees, shrubs and dwarf shrubs. Berne: Paul Haupt; 1990.
7. Cook E, Kairiukstis L. Methods of dendrochronology: Applications in the environmental sciences. Dordrecht: Kluwer Academic Publishers; 1990.
8. Fang J, Lechowicz MJ. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography 2006; 33(10): 1804–1819. doi: 10.1111/j.13652699.2006.01533.x.
9. Herbette S, Wortemann R, Awad H, et al. Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: Phenotypic and environmental sources of variability. Tree Physiology 2010; 30(11): 1448–1455. doi: 10.1093/treephys/tpq079.
10. Barigah TS, Charrier O, Douris M, et al. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals of Botany 2013; 112(7): 1431–1437. doi: 10.1093/aob/mct204.
11. von Wuehlisch G. EUFORGEN Technical guidelines for genetic conservation and use for European beech (Fagus sylvatica). Rome: Bioversity International; 2008.
12. Packham JR, Thomas PA, Atkinson MD, et al. Biological flora of the British Isles: Fagus sylvatica. Journal of Ecology 2012; 100(6): 1557–1608. doi: 10.1111/j.1365-2745.2012.02017.x.
13. Gutiérrez E. Dendroecological study of Fagus silvatica L. in the Montseny mountains (Spain). Acta Oecologica, Oecología Plantarum 1988; 9(3): 301–309.
14. Biondi F. Climatic signals in tree rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecologica 1993; 14(1): 57–71.
15. Biondi F, Visani S. Recent developments in the analysis of an Italian tree-ring network with emphasis on European beech (Fagus sylvatica L.). Tree Rings, Environment and Humanity: Proceedings of the International Conference; 1994 May 17–21; Tucson. Tucson: University of Arizona; 1996. p. 713–725.
16. Rozas V. Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science 2001; 58(3): 237–251. doi: 10.1051/forest:2001123.
17. Rozas V. Characterization and analysis of climatic signal in chronologies of Fagus sylvatica L. and Quercus robur L. in the central Cantabrian region, Spain (in Spanish). Forest Systems 2006; 15(2): 182–196.
18. Dittmar C, Zech W, Elling W. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Forest Ecology and Management 2003; 173(1–3): 63–78. doi: 10.1016/S0378-1127(01)00816-7.
19. Lebourgeois F. Dendroecological approach to the sensitivity of beech (Fagus sylvatica L.) to climate in France and Europe (in Spanish). Revue Forestière Française 2005; 57(1): 33–50.
20. Lebourgeois F, Bréda N, Ulrich E, et al. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 2005; 19(4): 385–401. doi: 10.1007/s00468-004-0397-9.
21. Piovesan G, Schirone B. Winter North Atlantic oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). International Journal of Biometeorology 2000; 44(3): 121–127. doi: 10.1007/s004840000055.
22. Piovesan G, Bernabei M, Di Filippo A, et al. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 2003; 21(1): 13–22. doi: 10.1078/1125-7865-00036.
23. Piovesan G, Biondi F, Bernabei M, et al. Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecologica 2005; 27(3): 197–210. doi: 10.1016/j.actao.2005.01.001.
24. Piovesan G, Di Filippo A, Alessandrini A, et al. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. Journal of Vegetation Science 2005; 16(1): 13–28. doi: 10.1111/j.1654-1103.2005.tb02334.x.
25. Jump AS, Hunt JM, Penuelas J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 2006; 12(11): 2163–2174. doi: 10.1111/j.13652486.2006.01250.x.
26. Jump AS, Hunt JM, Peñuelas J. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain. Ecoscience 2007; 14(4): 507–518. doi: 10.1111/j.1365-2486.2006.01250.x/full.
27. Di Filippo A, Biondi F, Čufar K, et al. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography 2007; 34(11): 1873–1892. doi: 10.1111/j.1365-2699.2007.01747.x/full.
28. Di Filippo A, Biondi F, Maugeri M, et al. Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Global Change Biology 2012; 18(3): 960–972. doi: 10.1111/j.1365-2486.2011.02617.x/full.
29. Friedrichs DA, Trouet V, Büntgen U, et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 2009; 23(4): 729–739. doi: 10.1007/s00468-009-0315-2.
30. Drobyshev I, Övergaard R, Saygin I, et al. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management 2010; 259(11): 2160–2171. doi: 10.1016/j.foreco.2010.01.037.
31. Babst F, Poulter B, Trouet V, et al. Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography 2013; 22(6): 706–717.
32. Tegel W, Seim A, Hakelberg D, et al. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research 2014; 133(1): 61–71. doi: 10.1007/s10342-013-0737-7.
33. Rozas V, Camarero JJ, Sangüesa-Barreda G, et al. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agricultural and Forest Meteorology 2015; 201: 153–164. doi: 10.1016/j.agrformet.2014.11.012.
34. Novak K, De Luis M, Saz M A, et al. Missing rings in Pinus halepensis–The missing link to relate the tree-ring record to extreme climatic events. Frontiers in Plant Science 2016; 7: 727.
35. Tejedor E, Saz MÁ, Cuadrat JM, et al. Temperature variability in the Iberian Range since 1602 inferred from tree-ring records. Climate of the Past 2017; 13(2): 93–105. doi: 10.5194/cp-13-93-2017.
36. Ninyerola M, Roure JM, Pons X. Digital climatic atlas of the Iberian Peninsula: Methodology and applications in bioclimatology and geobotany (in Spanish). Bellaterra: Centre de Recerca Ecológica i Aplicacions Forestal; 2005.
37. Agencia Estatal de Meteorología (AEMET). Thermopluviometric data from the meteorological station of Uznayo (Cantabria) (in Spanish). Madrid: Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, AEMET, Delegación Territorial en Cantabria; 2013.
38. Agencia Estatal de Meteorología (AEMET). Viewer of the climate atlas of the Peninsula and Balearic Islands, 1971–2000 (in Spanish) [Internet]. Madrid: Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Rural y Marino, Instituto de Meteorología de Portugal; 2016. Available from: http://agroclimap.aemet.es/#.
39. Rubio A, Blanco A, Sanz VG, et al. Parametric autoecology of the beech forests of Castilla y León (in Spanish). Investigación grarian. Sistemas y Recursos Forestales 2003; 12(1): 87–110.
40. Gómez Manzanedo M, Roig Gómez S, Reque Kilchenmann JA. Silvicultural characterization of Cantabrian beech forests: Influence of seasonal conditions and anthropic uses (in Spanish). Investigación Agraria: Sistemas y Recursos Forestales 2008; 17(2): 155–167.
41. Plan Nacional de Ortofotografía Aérea (PNOA). Digital photogrammetric flight of the autonomous community of Cantabria (in Spanish) [Internet]. Sistema de referencia: EPSG 25830 (ETRS89), Tamaño de pixel: 0.25 m. Madrid: Ministerio de Fomento, Instituto Geográfico Nacional (IGN), Centro Nacional de Información Geográfica (CNIG); 2014. Available from: http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=02211.
42. Tercer Inventario Forestal Nacional (IFN3). Third national forest inventory (in Spanish) [Internet]. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente, Dirección General de Medio Natural y Política Forestal; 2008. Available from: http://www.mapama.gob.es/es/biodiversidad/servicios/banco-datosnaturaleza/informacion-disponible/ifn3.aspx.
43. Instituto Geológico y Minero de España (IGME). Geological map of the Autonomous Community of Cantabria at a scale of 1:25,000 (in Spanish) [Internet]. Santander: Gobierno de Cantabria: IGME; 2014. Available from: http://mapas.cantabria.es/.
44. Instituto Geológico y Minero de España (IGME). Geomorphological map of the Autonomous Community of Cantabria at a scale of 1:25,000 (in Spanish) [Internet]. Santander: Gobierno de Cantabria; 2014. Available from: http://mapas.cantabria.es/.
45. Frochoso M. Geomorphology of the Nansa valley (in Spanish). Santander: Servicio de Publicaciones de la Universidad de Cantabria; 1990.
46. National Center for Geographic Information (CNIG). LIDAR digital terrain model [Internet]. Madrid: Ministerio de Fomento, Instituto Geográfico Nacional, Centro Nacional de Información Geográfica (CNIG); 2012. Available from: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp.
47. Hutchinson MF. Development of a continent-wide DEM with applications to terrain and climate analysis. In: Goodchild MF, et al.(editors). Environmental Modeling with GIS. New York: Oxford University Press; 1993. p. 392–399.
48. Felicísimo Pérez AM. Digital terrain models: Introduction and application in environmental sciences (in Spanish). Oviedo: Pentalfa Ediciones; 1994.
49. Cartoteca Regional Agraria (CRA). Edaphological map sheet No.82. Escala 1:50,000 (in Spanish) [Internet]. Santander: Gobierno de Cantabria, Centro de Investigación y Formación Agrarias (CIFA), Cartoteca Digital Agraria; 2005. Available from: http://www.cartotecaagraria.com/marc2.html.
50. Stokes MA, Smiley TL. An introduction to tree-ring dating. Chicago: The University of Chicago Press; 1968.
51. Yamaguchi DK. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 1991; 21(3): 414–416. doi: 10.1139/x91-053.
52. Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 1983; 43: 51–67.
53. Grissino-Mayer HD. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 2001; 57(2): 205–221.
54. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013. Available from: http://www.R-project.org/.
55. Bunn AG. A dendrochronology program library in R (dplR). Dendrochronologia 2008; 26(2): 115–124. doi: 10.1016/j.dendro.2008.01.002.
56. Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology 1984; 23(2): 201–213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.
57. Speer JH. Fundamentals of tree-ring research. University of Arizona Press; 2010.
58. Harris I, Jones PD, Osborn TJ, et al. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. International Journal of Climatology 2014; 34(3): 623–642. doi: 10.1002/joc.3711.
59. McGuire A D, Ruess R W, Lloyd A, et al. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: Dendrochronological, demographic, and experimental perspectives. Canadian Journal of Forest Research 2010; 40(7): 1197–1209. doi: 10.1139/X09-206.
60. Shi C, Masson-Delmotte V, Daux V, et al. Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology. Climate Dynamics 2015; 45(5): 1367–1380. doi: 10.1007/s00382-0142386-z.
61. Fritts HC, Guiot J, Gordon GA, et al. Methods of calibration, verification, and reconstruction. In: Methods of Dendrochronology. Dordrecht: Springer; 1990. p. 163–217. doi: 10.1007/978-94-015-7879-0_4.
62. Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research 2003; 24(2): 161–180. doi: 10.3354/cr024161.
63. Draper NR, Smith H. Applied regression analysis. John Wiley & Sons; 2014.
64. Willmott CJ. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 1982; 63(11): 1309–1313. doi: 10.1175/1520-0477(1982)063%3C1309:SCOTEO%3E2.0.CO;2.
65. Fowler J, Cohen L. Basic statistics in ornithology (in Spanish). Madrid: SEO/Birdlife; 1999.
66. Takahashi K, Tokumitsu Y, Yasue K. Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecological Research 2005; 20(4): 445–451. doi: 10.1007/s11284-005-0060-y.
67. González IG, Eckstein D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 2003; 23(7): 497–504.
68. doi: 10.1093/treephys/23.7.497.
69. Čufar K, Prislan P, Gričar J. Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research 2008; (53): 1–11.
70. Michelot A, Simard S, Rathgeber C, et al. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology 2012; 32(8): 1033–1045. doi: 10.1093/treephys/tps052.
71. Prislan P, Gričar J, de Luis M, et al. Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology 2013; 180: 142–151. doi: 10.1016/j.agrformet.2013.06.001.
72. Vavrcik H, Gryc V, Mensik L, et al. Xylem formation in Fagus sylvatica during one growing season. Dendrobiology 2013; 69–75. doi: 10.12657/denbio.069.008.
73. Rubino DL, McCarthy BC. Dendroclimatological analysis of white oak (Quercus alba L., Fagaceae) from an old-growth forest of southeastern Ohio, USA. Journal of the Torrey Botanical Society 2000; 127(3): 240–250. doi: 10.2307/3088761.
74. Gray ST, Fastie CL, Jackson ST, et al. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 AD. Journal of Climate 2004; 17(19): 3855–3865. doi: 10.1175/1520-0442(2004)017<3855:TROPIT>2.0.CO;2.
75. Peñuelas J, Ogaya R, Boada M, et al. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 2007; 30(6): 829–837. doi: 10.1111/j.2007.0906-7590.05247.x.
76. Scharnweber T, Manthey M, Criegee C, et al. Drought matters—Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 2011; 262(6): 947–961. doi: 10.1016/j. foreco.2011.05.026.
77. Michelot A, Bréda N, Damesin C, et al. Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management 2012; 265: 161–171. doi: 10.1016/j.foreco.2011.10.024.
DOI: https://doi.org/10.24294/jgc.v5i2.1671
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Víctor Lallana-Llorente
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.