References
Peñuelas J, Boada M. A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology 2003; 9(2): 131–140. doi: 10.1046/j.1365-2486.2003.00566.x.
Gutiérrez E. Dendrochronology: Methods and applications (in Spanish). In: Nieto X, Cau MA (editors). Arqueologia nautica mediterrània Monografies del CASC. Generalitat de Catalunya; 2009. p. 309–322.
Gottfried M, Pauli H, Futschik A, et al. Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2012; 2(2): 111–115. doi: 10.1038/nclimate1329.
Hughes MK, Swetnam TW, Diaz HF (editors). Dendroclimatology: Progress and prospects. Dordrecht: Springer; 2011.
Fritts HC. Tree rings and climate. London: Academic Press; 2012.
Schweingruber FH. Anatomy of European woods. An atlas for the identification of European trees, shrubs and dwarf shrubs. Berne: Paul Haupt; 1990.
Cook E, Kairiukstis L. Methods of dendrochronology: Applications in the environmental sciences. Dordrecht: Kluwer Academic Publishers; 1990.
Fang J, Lechowicz MJ. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography 2006; 33(10): 1804–1819. doi: 10.1111/j.13652699.2006.01533.x.
Herbette S, Wortemann R, Awad H, et al. Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: Phenotypic and environmental sources of variability. Tree Physiology 2010; 30(11): 1448–1455. doi: 10.1093/treephys/tpq079.
Barigah TS, Charrier O, Douris M, et al. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals of Botany 2013; 112(7): 1431–1437. doi: 10.1093/aob/mct204.
von Wuehlisch G. EUFORGEN Technical guidelines for genetic conservation and use for European beech (Fagus sylvatica). Rome: Bioversity International; 2008.
Packham JR, Thomas PA, Atkinson MD, et al. Biological flora of the British Isles: Fagus sylvatica. Journal of Ecology 2012; 100(6): 1557–1608. doi: 10.1111/j.1365-2745.2012.02017.x.
Gutiérrez E. Dendroecological study of Fagus silvatica L. in the Montseny mountains (Spain). Acta Oecologica, Oecología Plantarum 1988; 9(3): 301–309.
Biondi F. Climatic signals in tree rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecologica 1993; 14(1): 57–71.
Biondi F, Visani S. Recent developments in the analysis of an Italian tree-ring network with emphasis on European beech (Fagus sylvatica L.). Tree Rings, Environment and Humanity: Proceedings of the International Conference; 1994 May 17–21; Tucson. Tucson: University of Arizona; 1996. p. 713–725.
Rozas V. Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science 2001; 58(3): 237–251. doi: 10.1051/forest:2001123.
Rozas V. Characterization and analysis of climatic signal in chronologies of Fagus sylvatica L. and Quercus robur L. in the central Cantabrian region, Spain (in Spanish). Forest Systems 2006; 15(2): 182–196.
Dittmar C, Zech W, Elling W. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Forest Ecology and Management 2003; 173(1–3): 63–78. doi: 10.1016/S0378-1127(01)00816-7.
Lebourgeois F. Dendroecological approach to the sensitivity of beech (Fagus sylvatica L.) to climate in France and Europe (in Spanish). Revue Forestière Française 2005; 57(1): 33–50.
Lebourgeois F, Bréda N, Ulrich E, et al. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 2005; 19(4): 385–401. doi: 10.1007/s00468-004-0397-9.
Piovesan G, Schirone B. Winter North Atlantic oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). International Journal of Biometeorology 2000; 44(3): 121–127. doi: 10.1007/s004840000055.
Piovesan G, Bernabei M, Di Filippo A, et al. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 2003; 21(1): 13–22. doi: 10.1078/1125-7865-00036.
Piovesan G, Biondi F, Bernabei M, et al. Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecologica 2005; 27(3): 197–210. doi: 10.1016/j.actao.2005.01.001.
Piovesan G, Di Filippo A, Alessandrini A, et al. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. Journal of Vegetation Science 2005; 16(1): 13–28. doi: 10.1111/j.1654-1103.2005.tb02334.x.
Jump AS, Hunt JM, Penuelas J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 2006; 12(11): 2163–2174. doi: 10.1111/j.13652486.2006.01250.x.
Jump AS, Hunt JM, Peñuelas J. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain. Ecoscience 2007; 14(4): 507–518. doi: 10.1111/j.1365-2486.2006.01250.x/full.
Di Filippo A, Biondi F, Čufar K, et al. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography 2007; 34(11): 1873–1892. doi: 10.1111/j.1365-2699.2007.01747.x/full.
Di Filippo A, Biondi F, Maugeri M, et al. Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Global Change Biology 2012; 18(3): 960–972. doi: 10.1111/j.1365-2486.2011.02617.x/full.
Friedrichs DA, Trouet V, Büntgen U, et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 2009; 23(4): 729–739. doi: 10.1007/s00468-009-0315-2.
Drobyshev I, Övergaard R, Saygin I, et al. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management 2010; 259(11): 2160–2171. doi: 10.1016/j.foreco.2010.01.037.
Babst F, Poulter B, Trouet V, et al. Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography 2013; 22(6): 706–717.
Tegel W, Seim A, Hakelberg D, et al. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research 2014; 133(1): 61–71. doi: 10.1007/s10342-013-0737-7.
Rozas V, Camarero JJ, Sangüesa-Barreda G, et al. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agricultural and Forest Meteorology 2015; 201: 153–164. doi: 10.1016/j.agrformet.2014.11.012.
Novak K, De Luis M, Saz M A, et al. Missing rings in Pinus halepensis–The missing link to relate the tree-ring record to extreme climatic events. Frontiers in Plant Science 2016; 7: 727.
Tejedor E, Saz MÁ, Cuadrat JM, et al. Temperature variability in the Iberian Range since 1602 inferred from tree-ring records. Climate of the Past 2017; 13(2): 93–105. doi: 10.5194/cp-13-93-2017.
Ninyerola M, Roure JM, Pons X. Digital climatic atlas of the Iberian Peninsula: Methodology and applications in bioclimatology and geobotany (in Spanish). Bellaterra: Centre de Recerca Ecológica i Aplicacions Forestal; 2005.
Agencia Estatal de Meteorología (AEMET). Thermopluviometric data from the meteorological station of Uznayo (Cantabria) (in Spanish). Madrid: Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, AEMET, Delegación Territorial en Cantabria; 2013.
Agencia Estatal de Meteorología (AEMET). Viewer of the climate atlas of the Peninsula and Balearic Islands, 1971–2000 (in Spanish) [Internet]. Madrid: Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Rural y Marino, Instituto de Meteorología de Portugal; 2016. Available from: http://agroclimap.aemet.es/#.
Rubio A, Blanco A, Sanz VG, et al. Parametric autoecology of the beech forests of Castilla y León (in Spanish). Investigación grarian. Sistemas y Recursos Forestales 2003; 12(1): 87–110.
Gómez Manzanedo M, Roig Gómez S, Reque Kilchenmann JA. Silvicultural characterization of Cantabrian beech forests: Influence of seasonal conditions and anthropic uses (in Spanish). Investigación Agraria: Sistemas y Recursos Forestales 2008; 17(2): 155–167.
Plan Nacional de Ortofotografía Aérea (PNOA). Digital photogrammetric flight of the autonomous community of Cantabria (in Spanish) [Internet]. Sistema de referencia: EPSG 25830 (ETRS89), Tamaño de pixel: 0.25 m. Madrid: Ministerio de Fomento, Instituto Geográfico Nacional (IGN), Centro Nacional de Información Geográfica (CNIG); 2014. Available from: http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=02211.
Tercer Inventario Forestal Nacional (IFN3). Third national forest inventory (in Spanish) [Internet]. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente, Dirección General de Medio Natural y Política Forestal; 2008. Available from: http://www.mapama.gob.es/es/biodiversidad/servicios/banco-datosnaturaleza/informacion-disponible/ifn3.aspx.
Instituto Geológico y Minero de España (IGME). Geological map of the Autonomous Community of Cantabria at a scale of 1:25,000 (in Spanish) [Internet]. Santander: Gobierno de Cantabria: IGME; 2014. Available from: http://mapas.cantabria.es/.
Instituto Geológico y Minero de España (IGME). Geomorphological map of the Autonomous Community of Cantabria at a scale of 1:25,000 (in Spanish) [Internet]. Santander: Gobierno de Cantabria; 2014. Available from: http://mapas.cantabria.es/.
Frochoso M. Geomorphology of the Nansa valley (in Spanish). Santander: Servicio de Publicaciones de la Universidad de Cantabria; 1990.
National Center for Geographic Information (CNIG). LIDAR digital terrain model [Internet]. Madrid: Ministerio de Fomento, Instituto Geográfico Nacional, Centro Nacional de Información Geográfica (CNIG); 2012. Available from: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp.
Hutchinson MF. Development of a continent-wide DEM with applications to terrain and climate analysis. In: Goodchild MF, et al.(editors). Environmental Modeling with GIS. New York: Oxford University Press; 1993. p. 392–399.
Felicísimo Pérez AM. Digital terrain models: Introduction and application in environmental sciences (in Spanish). Oviedo: Pentalfa Ediciones; 1994.
Cartoteca Regional Agraria (CRA). Edaphological map sheet No.82. Escala 1:50,000 (in Spanish) [Internet]. Santander: Gobierno de Cantabria, Centro de Investigación y Formación Agrarias (CIFA), Cartoteca Digital Agraria; 2005. Available from: http://www.cartotecaagraria.com/marc2.html.
Stokes MA, Smiley TL. An introduction to tree-ring dating. Chicago: The University of Chicago Press; 1968.
Yamaguchi DK. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 1991; 21(3): 414–416. doi: 10.1139/x91-053.
Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 1983; 43: 51–67.
Grissino-Mayer HD. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 2001; 57(2): 205–221.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013. Available from: http://www.R-project.org/.
Bunn AG. A dendrochronology program library in R (dplR). Dendrochronologia 2008; 26(2): 115–124. doi: 10.1016/j.dendro.2008.01.002.
Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology 1984; 23(2): 201–213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.
Speer JH. Fundamentals of tree-ring research. University of Arizona Press; 2010.
Harris I, Jones PD, Osborn TJ, et al. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. International Journal of Climatology 2014; 34(3): 623–642. doi: 10.1002/joc.3711.
McGuire A D, Ruess R W, Lloyd A, et al. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: Dendrochronological, demographic, and experimental perspectives. Canadian Journal of Forest Research 2010; 40(7): 1197–1209. doi: 10.1139/X09-206.
Shi C, Masson-Delmotte V, Daux V, et al. Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology. Climate Dynamics 2015; 45(5): 1367–1380. doi: 10.1007/s00382-0142386-z.
Fritts HC, Guiot J, Gordon GA, et al. Methods of calibration, verification, and reconstruction. In: Methods of Dendrochronology. Dordrecht: Springer; 1990. p. 163–217. doi: 10.1007/978-94-015-7879-0_4.
Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research 2003; 24(2): 161–180. doi: 10.3354/cr024161.
Draper NR, Smith H. Applied regression analysis. John Wiley & Sons; 2014.
Willmott CJ. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 1982; 63(11): 1309–1313. doi: 10.1175/1520-0477(1982)063%3C1309:SCOTEO%3E2.0.CO;2.
Fowler J, Cohen L. Basic statistics in ornithology (in Spanish). Madrid: SEO/Birdlife; 1999.
Takahashi K, Tokumitsu Y, Yasue K. Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecological Research 2005; 20(4): 445–451. doi: 10.1007/s11284-005-0060-y.
González IG, Eckstein D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 2003; 23(7): 497–504. doi: 10.1093/treephys/23.7.497.
Čufar K, Prislan P, Gričar J. Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research 2008; (53): 1–11.
Michelot A, Simard S, Rathgeber C, et al. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology 2012; 32(8): 1033–1045. doi: 10.1093/treephys/tps052.
Prislan P, Gričar J, de Luis M, et al. Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology 2013; 180: 142–151. doi: 10.1016/j.agrformet.2013.06.001.
Vavrcik H, Gryc V, Mensik L, et al. Xylem formation in Fagus sylvatica during one growing season. Dendrobiology 2013; 69–75. doi: 10.12657/denbio.069.008.
Rubino DL, McCarthy BC. Dendroclimatological analysis of white oak (Quercus alba L., Fagaceae) from an old-growth forest of southeastern Ohio, USA. Journal of the Torrey Botanical Society 2000; 127(3): 240–250. doi: 10.2307/3088761.
Gray ST, Fastie CL, Jackson ST, et al. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 AD. Journal of Climate 2004; 17(19): 3855–3865. doi: 10.1175/1520-0442(2004)017<3855:TROPIT>2.0.CO;2.
Peñuelas J, Ogaya R, Boada M, et al. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 2007; 30(6): 829–837. doi: 10.1111/j.2007.0906-7590.05247.x.
Scharnweber T, Manthey M, Criegee C, et al. Drought matters—Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 2011; 262(6): 947–961. doi: 10.1016/j. foreco.2011.05.026.
Michelot A, Bréda N, Damesin C, et al. Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management 2012; 265: 161–171. doi: 10.1016/j.foreco.2011.10.024.