Interaction of light with lead halide perovskites: A review
Vol 2, Issue 2, 2019
VIEWS - 1105 (Abstract) 277 (PDF)
Abstract
Lead halide perovskites are the new rising generation of semiconductor materials due to their unique optical and electrical properties. The investigation of the interaction of halide perovskites and light is a key issue not only for understanding their photophysics but also for practical applications. Hence, tremendous efforts have been devoted to this topic and brunch into two: (i) decomposition of the halide perovskites thin films under light illumination; and (ii) influence of light soaking on their photoluminescence (PL) properties. In this review, we for the first time thoroughly compare the illumination conditions and the sample environment to correlate the PL changes and decomposition of perovskite under light illumination. In the case of vacuum and dry nitrogen, PL of the halide perovskite (MAPbI3–xClx, MAPbBr3–xClx, MAPbI3) thin films decreases due to the defects induced by light illumination, and under high excitations, the thin film even decomposes. In the presence of oxygen or moisture, light induces the PL enhancement of halide perovskite (MAPbI3) thin films at low light illumination, while increasing the excitation, which causes the PL to quench and perovskite thin film to decompose. In the case of mixed halide perovskite ((MA)Pb(BrxI1-x)3) light induces reversible segregation of Br domains and I domains.
Keywords
Full Text:
PDFReferences
1. Pellet N, Peng G, Gregori G, et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angewandte Chemie International Edition 2014; 53(12): 3151–3157.
2. Eperon GE, Stranks SD, Menelaou C, et al. Forma-midinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014; 7(3): 982–988.
3. Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology 2015; 10(5): 391–402.
4. Beal RE, Slotcavage DJ, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. Journal of Physical Chemistry Letters 2016; 7(5): 746–751.
5. Sjoerd A, Veldhuis, Pablo P, et al. Perovskite materials for light-emitting diodes and lasers. Advanced Materials 2016; 28(32): 6804–34.
6. Sum TC. Halide Perovskite Lasers. CLEO: Conference on Lasers and Electro-Optics; 2017.
7. Ahmadi M, Wu T, Hu B. A review on organic–inorganic halide perovskite photodetectors: Device engineering and fundamental physics. Advanced Materials 2017; 29(41): 1–24.
8. Wangyang P, Gong C, Rao G, et al. Recent advances in halide perovskite photodetectors based on different dimensional materials. Advanced Optical Materials 2018; 6(11): 1–30.
9. Dang Y, Ju D, Wang L, et al. Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm 2016; 18(24): 4476–4484.
10. Bai S, Yuan Z, Gao F. Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. Journal of Materials Chemistry C 2016; 4(18): 3898–3904.
11. Yang Z, Zhang S, Li L, et al. Research progresses on large-area perovskite thin films and solar modules. Journal of Materiomics 2017; 3(4): 231–244.
12. Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics 2015; 11(7): 582–587.
13. Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 2015; 15(6): 3692–3696.
14. Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015; 347 (6221): 519–522.
15. Unger EL, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. Journal of Materials Chemistry A 2017; 5(23): 11401–11409.
16. Liu H, Wu Z, Shao J, et al. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 2017; 11(2): 2239–2247.
17. Jellicoe TC, Richter JM, Glass HFJ, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society 2016; 138(9): 2941–2944.
18. Zhang J, Yang Y, Deng H, et al. High quantum yield blue emission from lead free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017; 11(9): 9294–9302.
19. Leng M, Chen Z, Yang Y, et al. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie-International Edition 2016; 55 (48): 15012–15016.
20. Creutz SE, Siena MCD, Creutz SE, et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Letters; 2018; 18(2): 1118–1123.
21. Zhang L, Ju M, Liang W. The effect of moisture on the structures and properties of lead halide perovskites: A first-principles theoretical investigation. Physical Chemistry Chemical Physics 2016; 18(33): 23174–23183.
22. Ma H, Imran M, Dang Z, et al. Growth of metal halide perovskite, from nanocrystal to micron-scale crystal: A review. Crystals 2018; 8(5): 182.
23. Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials 2015; 5(15): 1–8.
24. Yang J, Siempelkamp BD, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015; 9(2): 1955–1963.
25. Aristidou N, Sanchez-Molina I, Chotchuangchutch-aval T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie-International Edition 2015; 54(28): 8208–8212.
26. Manser JS, Saidaminov MI, Christians JA, et al. Making and breaking of lead halide perovskites. Accounts of Chemical Research 2016; 49(2): 330–338.
27. Dang Z, Shamsi J, Palazon F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017; 11(2): 2124–2132.
28. Dang Z, Shamsi J, Akkerman QA, et al. Low-temperature electron beam-induced transformations of cesium lead halide perovskite nanocrystals. ACS Omega 2017; 2(9): 5660–5665.
29. Philippe B, Park BW , Lindblad R, et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures — A photoelectron spectroscopy investigation. Chemistry of Materials 2015; 27(5): 1720–1731.
30. Han Y, Meyer S, Dkhissi Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A 2015; 3(15): 8139–8147.
31. Leguy AMA, Hu Y, Campoy-Quiles M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chemistry of Materials 2015; 27(9): 3397–3407.
32. Christians JA, Herrera PAM, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society 2015; 137(4): 1530–1538.
33. Brunetti B, Cavallo C, Ciccioli A, et al. On the thermal and thermodynamic (in)stability of methylam-monium lead halide perovskites. Scientific Reports 2016; 6: 1–10.
34. Huang W, Sadhu S, Ptasinska S. Heat- and gas-induced transformation in CH3NH3PbI3 perovskites and its effect on the efficiency of solar cells. Chemistry of Materials 2017; 29(19): 8478–8485.
35. Milosavljević AR, Huang W, Sadhu S, et al. Low-energy electron-induced transformations in organolead halide perovskite. Angewandte Chemie International Edition 2016; 55(34): 10083–10087.
36. Yu Y, Zhang D, Kisielowski C, et al. Atomic resolution imaging of halide perovskites. Nano Letters 2016; 16(12): 7530–7535.
37. Wang Y, Li X, Sreejith S, et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Advanced Materials 2016; 28(48): 10637–10643.
38. Yuan H, Debroye E, Janssen K, et al. Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration. The Journal of Physical Chemistry Letters 2016; 7(3): 561–566.
39. Ahn N, Kwak K, Jang SM, et al. Trapped charge-driven degradation of perovskite solar cells. Nature Communications 2016; 7: 1–9.
40. Li Y, Xu X, Wang C, et al. Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. Journal of Physical Chemistry C 2017; 121(7): 3904–3910.
41. Xu R, Li Y, Jin T, et al. In situ observation of light illumination-induced degradation in organometal mixed-halide perovskite films. Acs Applied Materials & Interfaces 2018; 10(7): 6737–6746.
42. Mosconi E, Meggiolaro D, Snaith HJ, et al. Light-induced annihilation of frenkel defects in organo-lead halide perovskites. Energy & Environmental Science 2016; 9(10): 3180–3187.
43. Li C, Zhong Y, Luna C A, et al. Emission enhancement and intermittency in polycrystalline organolead halide perovskite films. Molecules 2016; 21(8): 1081.
44. Chen S, Wen X, Huang S, et al. Light illumination induced photoluminescence enhancement and quenching in lead halide perovskite. Solar Rrl 2017; 1 (1).
45. Slotcavage DJ, Karunadasa HI, McGehee MD. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Letters 2016; 1(6): 1199–1205.
46. Li W, Rothmann MU, Liu A, et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Advanced Energy Materials: 2017, 7(20): 1–13.
47. Yoon SJ, Draguta S, Manser JS, et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Letters 2016; 1(1): 290–296.
48. Barker AJ, Sadhanala A, Deschler F, et al. Defect-assisted photoinduced halide segregation in mixed- halide perovskite thin films. ACS Energy Letters 2017; 2(6): 1416–1424.
49. Bischak CG, Hetherington CL, Wu H, et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Letters 2017; 17(2): 1028–1033.
50. Hoke ET, Slotcavage DJ, Dohner ER, et al. Rever sible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science 2015; 6(1): 613–617.
51. Brivio F, Caetano C, Walsh A. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1-xBrx)3 hybrid halide perovskite alloy. Journal of Physical Chemistry Letters 2016; 7(6): 1083–1087.
52. Brenes R, Eames C, Bulović V, et al. The impact of atmosphere on the local luminescence properties of metal halide perovskite grains. Advanced Materials 2018; 30(15): 1–8.
53. Chen S, Wen X, Sheng R, et al. Mobile ion induced slow carrier dynamics in organic-inorganic perovskite CH3NH3PbBr3. ACS Applied Materials & Interfaces 2016; 8(8): 5351–5357.
54. Dequilettes DW, Zhang W, Burlakov VM, et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nature Communications 2016; 7: 1–9.
55. Aristidou N, Eames C, Sanchez-Molina I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications 2017; 8: 1–10.
56. Merdasa A, Bag M, Tian Y, et al. Super-resolution luminescence microspectroscopy reveals the mechanism of photoinduced degradation in CH3NH3PbI3 perovskite nanocrystals. Journal of Physical Chemistry C 2016; 120(19): 10711–10719.
57. Habisreutinger SN, Leijtens T, Eperon GE, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters 2014; 14(10): 5561–5568.
58. McMeekin DP, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016; 351(6269): 151–155.
59. Jaffe A, Lin Y, Beavers CM, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Central Science 2016; 2(4): 201–209.
DOI: https://doi.org/10.24294/can.v2i2.813
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Characterization and Application of Nanomaterials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.