A review on antimicrobial properties of nano-ferrites: Biomedical applications

G. M. Shweta, Lalsingh Naik, Sushant Kakati, Rangappa Pujar, Shridhar Mathad, Deepak Shirgaonkar

Article ID: 7509
Vol 8, Issue 1, 2025

VIEWS - 208 (Abstract)

Abstract


This review focuses on ferrites, which are gaining popularity with their unique properties like high electrical resistivity, thermal stability, and chemical stability, making them suitable for versatile applications both in industry and in biomedicine. This review is highly indicative of the importance of synthesis technique in order to control ferrite properties and, consequently, their specific applications. While synthesizing the materials with consideration of certain properties that help in certain methods of preparation using polyol route, green synthesis, sol-gel combustion, or other wise to tailor make certain properties shown by ferrites, this study also covers biomedical applications of ferrites, including magnetic resonance imaging (MRI), drug delivery systems, cancer hyperthermia therapy, and antimicrobial agents. This was able to inhibit the growth of all tested Gram-negative and positive bacteria as compared with pure ferrite nanoparticles without Co, Mn or Zn doping. In addition, ferrites possess the ability to be used in environmental remediation; such as treatment of wastewater which makes them useful for high-surface-area and adsorption capacity due heavy metals and organic pollutants. A critical analysis of functionalization strategies and possible applications are presented in this work to emphasize the capability of nanoferrites as an aid for the advancement both biomedical technology and environmental sustainability due to their versatile properties combined with a simple, cost effective synthetic methodology.


Keywords


nano-ferrites; ferrites; dopants; biomedical

Full Text:

PDF


References


1. Buschow KHJ, de Boer FR. Physics of Magnetism and Magnetic Materials. Springer US; 2003.

2. Broese van Groenou A, Bongers PF, Stuyts AL. Magnetism, microstructure and crystal chemistry of spinel ferrites. Materials Science and Engineering. 1969; 3(6): 317-392. doi: 10.1016/0025-5416(69)90042-1

3. Gupta M. Synthesis of nanosized ferrites by solution combustion method and investigation on their magnetic and electrical properties. Available online: http://hdl.handle.net/10603/10671 (accessed on 22 September 2024).

4. Leslie-Pelecky DL, Rieke RD. Magnetic Properties of Nanostructured Materials. Chemistry of Materials. 1996; 8(8): 1770-1783. doi: 10.1021/cm960077f

5. Chee KL, Yong SK, No YP, et al. Multibit MRAM using a pair of memory cells. IEEE Transactions on Magnetics. 2005; 41(10): 2670-2672. doi: 10.1109/tmag.2005.855288

6. Jadhav P, Patankar K, Mathe V, et al. Structural and magnetic properties of Ni0.8Co0.2−2x CuxMnxFe2O4 spinel ferrites prepared via solution combustion route. Journal of Magnetism and Magnetic Materials. 2015; 385: 160-165. doi: 10.1016/j.jmmm.2015.03.020

7. Sugimoto M. The Past, Present, and Future of Ferrites. Journal of the American Ceramic Society. 1999; 82(2): 269-280. doi: 10.1111/j.1551-2916.1999.tb20058.x

8. Shaikh PA, Kambale RC, Rao AV, et al. Structural, magnetic and electrical properties of Co–Ni–Mn ferrites synthesized by co-precipitation method. Journal of Alloys and Compounds. 2010; 492(1-2): 590-596. doi: 10.1016/j.jallcom.2009.11.189

9. Anis-ur-Rehman M, Malik MA, Akram M, et al. Proficient magnesium nanoferrites: synthesis and characterization. Physica Scripta. 2011; 83(1): 015602. doi: 10.1088/0031-8949/83/01/015602

10. Amiri M, Salavati-Niasari M, Akbari A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Advances in Colloid and Interface Science. 2019; 265: 29-44. doi: 10.1016/j.cis.2019.01.003

11. Rana G, Dhiman P, Kumar A, et al. Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications. Chemical Engineering Research and Design. 2021; 175: 182-208. doi: 10.1016/j.cherd.2021.08.040

12. Joshi S, Kumar M, Chhoker S, et al. Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. Journal of Molecular Structure. 2014; 1076: 55-62. doi: 10.1016/j.molstruc.2014.07.048

13. Roca AG, Costo R, Rebolledo AF, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics. 2009; 42(22): 224002. doi: 10.1088/0022-3727/42/22/224002

14. Ghosh N, Pant P, Bhuvaneswari S. Chemical Methodologies for Preparation of Micron and Nanometer Scale Ferrites-A Mini Review of Patents. Recent Patents on Nanotechnology. 2008; 2(1): 8-18. doi: 10.2174/187221008783478653

15. Landrum GA, Genin H. Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys. J Solid State Chem. 2003; 176(2): 587-593. doi: 10.1016/S0022-4596(03)00343-8

16. Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials. 2007; 53(2): 117-166. doi: 10.1016/j.pcrysgrow.2007.04.001

17. Sushant S.K, Choudhari N.J, Patil S, et al. Development of M–NiFe2O4 (Co, Mg, Cu, Zn, and Rare Earth Materials) and the Recent Major Applications. International Journal of Self-Propagating High-Temperature Synthesis. 2023; 32(2): 61-116. doi: 10.3103/s1061386223020061

18. Pulišová P, Kováč J, Voigt A, et al. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. Journal of Magnetism and Magnetic Materials. 2013; 341: 93-99. doi: 10.1016/j.jmmm.2013.04.003

19. Uzo Anya A, and HMusa S. A Review of Processes Used in Polyol Synthesis from Vegetable Oils. Scholars Academic Journal of Biosciences (SAJB). 2024; 2(2): 141-143.

20. Afgan NH, Al Gobaisi D.A, Carvalho M.G, and Cumo M. Sustainable energy development. Renewable and Sustainable Energy Reviews. 1998; 2(3): 235-286.doi: 10.1016/S1364-0321(98)00002-1

21. Yue Z, Li L, Zhou J, et al. Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels. Materials Science and Engineering: B. 1999; 64(1): 68-72.doi: 10.1016/S0921-5107(99)00152-X

22. Pramanik P. Novel chemical route for the preparation of nanosized oxides, phosphates, vanadates, molybdates and tungstates using polymer precursors. Bulletin of Materials Science 1999; 22(3): 335-339.doi: 10.1007/BF02749940/METRICS

23. Shweta GM, Naik LR, Pujar RB, et al. Influence of magnesium doping on structural and elastic parameters of Nickel Zinc nanoferrites. Materials Chemistry and Physics. 2021; 257: 123825. doi: 10.1016/j.matchemphys.2020.123825

24. Kaziet S. Sintering Temperature Dependent Structural and Mechanical Studies of BaxPb1 − xTiO3 Ferroelectrics. Journal of Nano- and Electronic Physics. 2020; 12(4): 4018.doi: 10.21272/JNEP.12(4).04018

25. Shweta GM, Naik LR, Pujar RB, and Mathad SN. Copper-Doped Nickel Zinc Nano-ferrites by Solution-Combustion Synthesis Using Sucrose as a Fuel. International Journal of Self-Propagating High-Temperature Synthesis. 2020; 29(4): 208-212. doi: 10.3103/S1061386220040135/TABLES/3

26. Mahfouz MG, Galhoum AA, Gomaa NA, et al. Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chemical Engineering Journal. 2015; 262: 198-209. doi: 10.1016/j.cej.2014.09.061

27. Flores RG, Andersen SLF, Maia LKK, et al. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst. Journal of Environmental Management. 2012; 111: 53-60. doi: 10.1016/j.jenvman.2012.06.017

28. Hasanzadeh M, Shadjou N, de la Guardia M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends in Analytical Chemistry. 2015; 72: 1-9. doi: 10.1016/j.trac.2015.03.016

29. Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Research. 2013; 47(12): 3931-3946. doi: 10.1016/j.watres.2012.09.058

30. Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Reports on Progress in Physics. 2014; 78(1): 016601. doi: 10.1088/0034-4885/78/1/016601

31. Yang M, Gao L, Liu K, et al. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta. 2015; 131: 661-665. doi: 10.1016/j.talanta.2014.08.042

32. Kefeni KK, Mamba BB, Msagati TAM. Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Separation and Purification Technology. 2017; 188: 399-422. doi: 10.1016/j.seppur.2017.07.015

33. Kim DH, Nikles DE, Brazel CS. Synthesis and Characterization of Multifunctional Chitosan- MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials. 2010; 3(7): 4051-4065. doi: 10.3390/ma3074051

34. Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews. 2011; 63(9): 789-808. doi: 10.1016/j.addr.2011.03.008

35. Peiravi M, Eslami H, Ansari M, et al. Magnetic hyperthermia: Potentials and limitations. Journal of the Indian Chemical Society. 2022; 99(1): 100269. doi: 10.1016/j.jics.2021.100269

36. Wang J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics. 2006; 21(10): 1887-1892. doi: 10.1016/j.bios.2005.10.027

37. Brück E, Tegus O, Cam Thanh DT, et al. A review on Mn based materials for magnetic refrigeration: Structure and properties. International Journal of Refrigeration. 2008; 31(5): 763-770. doi: 10.1016/j.ijrefrig.2007.11.013

38. Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews. 2008; 60(11): 1252-1265. doi: 10.1016/j.addr.2008.03.018

39. Karimi Z, Karimi L, Shokrollahi H. Nano-magnetic particles used in biomedicine: Core and coating materials. Materials Science and Engineering: C. 2013; 33(5): 2465-2475. doi: 10.1016/j.msec.2013.01.045

40. Abdel Maksoud MIA, El-Sayyad GS, El-Khawaga AM, et al. Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. Journal of Hazardous Materials. 2020; 399: 123000. doi: 10.1016/j.jhazmat.2020.123000

41. Mahamuni-Badiger P, Ghare V, Nikam C, et al. The fungal infections and their inhibition by Zinc oxide nanoparticles: an alternative approach to encounter drug resistance. The Nucleus. 2023; 67(2): 291-309. doi: 10.1007/s13237-023-00439-1

42. Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports. 2015; 5(1). doi: 10.1038/srep14813

43. Mahdavi M, Namvar F, Ahmad M, et al. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Sea-weed (Sargassum muticum) Aqueous Extract. Molecules. 2013; 18(5): 5954-5964. doi: 10.3390/molecules18055954

44. Kalia R, Verma R, Chauhan A, Sharma A, Kumar R. Recent Advances and Trends in ZnO Hybrid Nanostructures. ZnO and Their Hybrid Nano-Structures: Potential Candidates for Diverse Applications.

45. Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research. 2016; 7(1): 17-28. doi: 10.1016/j.jare.2015.02.007

46. Muhamad Arshad J, Raza W, Amin N, et al. Synthesis and characterization of cobalt ferrites as MRI contrast agent. Materials Today: Proceedings. 2021; 47: S50-S54. doi: 10.1016/j.matpr.2020.04.746

47. Yang H, Zhang C, Shi X, et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials. 2010; 31(13): 3667-3673. doi: 10.1016/j.biomaterials.2010.01.055

48. Nasrin S, Chowdhury, Moazzam Hossen M, et al. Study of the suitability of manganese-substituted cobalt ferrites nanoparticles as MRI contrast agent and treatment by employing hyperthermia temperature. Journal of Magnetism and Magnetic Materials. 2022; 564: 170065. doi: 10.1016/j.jmmm.2022.170065

49. Umut E, Coşkun M, Pineider F, et al. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. Journal of Colloid and Interface Science. 2019; 550: 199-209. doi: 10.1016/j.jcis.2019.04.092

50. Maksoud MIAA, El-Sayyad GS, Ashour AH, et al. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial Pathogenesis. 2019; 127: 144-158. doi: 10.1016/j.micpath.2018.11.045

51. Camacho-González MA, Quezada-Cruz M, Cerón-Montes GI, et al. Synthesis and characterization of magnetic zinc-copper ferrites: Antibacterial activity, photodegradation study and heavy metals removal evaluation. Materials Chemistry and Physics. 2019; 236: 121808. doi: 10.1016/j.matchemphys.2019.121808

52. Naik AB, Naik PP, Hasolkar SS, et al. Structural, magnetic and electrical properties along with antifungal activity & adsorption ability of cobalt doped manganese ferrite nanoparticles synthesized using combustion route. Ceramics International. 2020; 46(13): 21046-21055. doi: 10.1016/j.ceramint.2020.05.177

53. Dhanda N, Thakur P, Aidan Sun AC, et al. Structural, optical and magnetic properties along with antifungal activity of Ag-doped Ni-Co nanoferrites synthesized by eco-friendly route. Journal of Magnetism and Magnetic Materials. 2023; 572: 170598. doi: 10.1016/j.jmmm.2023.170598

54. Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science. 2011; 166(1-2): 8-23. doi: 10.1016/j.cis.2011.04.003

55. Khosroshahi ME, Ghazanfari L, Hasan-Nejad Z. Preliminary Results of Treating Cancerous Cells of Lung (QU-DB) by Hyperthermia using Diode Laser and Gold Coated Fe3O4 /SiO2 Nano-Shells: An in-Vitro Assay. Iranian Journal of Medical Physics. 2012; 9(4): 254.

56. Tran N, Webster TJ. Magnetic Nano-Particles: Biomedical Applications And Challenges. Journal of Materials Chemistry. 2010; 20(40): 8760. doi: 10.1039/c0jm00994f

57. Lee S.W, Bae S, Takemura Y, et al. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. Journal of Magnetism and Magnetic Materials. 2007; 310(2): 2868-2870. doi: 10.1016/j.jmmm.2006.11.080

58. Dey C, Baishya K, Ghosh A, et al. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials. 2017; 427: 168-174. doi: 10.1016/j.jmmm.2016.11.024

59. Valente F, Astolfi L, Simoni E, et al. Nanoparticle drug delivery systems for inner ear therapy: An overview. Journal of Drug Delivery Science and Technology. 2017; 39: 28-35. doi: 10.1016/j.jddst.2017.03.003

60. Yu X, Zhu Y. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia. Science and Technology of Advanced Materials. 2016; 17(1): 229-238. doi: 10.1080/14686996.2016.1178055

61. Bahrami B, Hojjat-Farsangi M, Mohammadi H, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters. 2017; 190: 64-83. doi: 10.1016/j.imlet.2017.07.015

62. Krishnan KM. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics. 2010; 46(7): 2523-2558. doi: 10.1109/tmag.2010.2046907

63. Salavati-Niasari M, Salemi P, Davar F. Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N,N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina. Journal of Molecular Catalysis A: Chemical. 2005; 238(1-2): 215-222. doi: 10.1016/j.molcata.2005.05.026

64. Salavati-Niasari M, Dadkhah M, Davar F. Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonatozirconium(IV) nitrate as new precursor complex. InorganicaChimica Acta. 2009; 362(11): 3969-3974. doi: 10.1016/j.ica.2009.05.036

65. Salavati-Niasari M, Davar F. In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14-membered hexaaza macrocyclic ligand “3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane.” Inorganic Chemistry Communications. 2006; 9(2): 175-179. doi: 10.1016/j.inoche.2005.10.028

66. Wu X, Ding Z, Song N, et al. Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nano-particles. Ceramics International. 2016; 42(3): 4246-4255. doi: 10.1016/j.ceramint.2015.11.100

67. Gupta A.K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26(18): 3995-4021. doi: 10.1016/j.biomaterials.2004.10.012

68. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 2009; 27(1): 76-83. doi: 10.1016/j.biotechadv.2008.09.002

69. Chudasama B, Vala A, KAndhariya N, et al. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures.” Nano Res. 2009; 2(12): 955-965.doi: 10.1007/S12274-009-9098-4/METRICS

70. Arokiyaraj S, Saravanan M, Udaya Prakash NK, et al. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: An in vitro study. Materials Research Bulletin. 2013; 48(9): 3323-3327. doi: 10.1016/j.materresbull.2013.05.059

71. Kurtz MB and Rex J.H. Glucan synthase inhibitors as antifungal agents. Adv Protein Chem. 2001; 56: 423-475.doi: 10.1016/S0065-3233(01)56011-8

72. Brown DF, Kothari D. Comparison of antibiotic discs from different sources. Journal of Clinical Pathology. 1975; 28(10): 779-783. doi: 10.1136/jcp.28.10.779

73. Shweta G.M, Naik L.R, Pujar RB, et al. Cobalt, Copper and Magnesium Doped Nickel Zinc Nanoferrites by Solution-Combustion Method: Structural, Antibacterial and Antifungal Properties. Journal of Metastable and Nanocrystalline Materials. 2024; 39: 21-36. doi: 10.4028/p-zan6ns

74. Shin T.H, Choi Y, Kim S, et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews. 2015; 44(14): 4501-4516. doi: 10.1039/c4cs00345d

75. Sánchez J, Cortés-Hernández DA, Rodríguez-Reyes M. Synthesis of TEG-coated cobalt-gallium ferrites: Characterization and evaluation of their magnetic properties for biomedical devices. Journal of Alloys and Compounds. 2019; 781: 1040-1047. doi: 10.1016/j.jallcom.2018.12.052

76. Ansari MA. Nanotechnology in Food and Plant Science: Challenges and Future Prospects. Plants. 2023; 12(13): 2565.doi: 10.3390/PLANTS12132565/S1

77. Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. International Journal of Pharmaceutics. 2015; 496(2): 191-218. doi: 10.1016/j.ijpharm.2015.10.058

78. Muneer R, Hashmet MR, Pourafshary P, Shakeel M. Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning. Nanomaterials. 2023; 13(7): 1209.doi: 10.3390/NANO13071209/S1

79. Chircov C, Ștefan RE, Dolete G, et al. Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics. 2022; 14(5): 1057. doi: 10.3390/pharmaceutics14051057

80. Hashem AH, Saied E, Amin BH, et al. Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct.Biomater. 2022; 13(4): 242.doi: 10.3390/JFB13040242/S1

81. Ambashta RD, Sillanpää M. Water purification using magnetic assistance: A review. Journal of Hazardous Materials. 2010; 180(1-3): 38-49. doi: 10.1016/j.jhazmat.2010.04.105

82. Zeng S, Duan S, Tang R, et al. Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chemical Engineering Journal. 2014; 258: 218-228. doi: 10.1016/j.cej.2014.07.093

83. Konicki W, Sibera D, Mijowska E, et al. Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. Journal of Colloid and Interface Science. 2013; 398: 152-160. doi: 10.1016/j.jcis.2013.02.021

84. Zhang X, Zhang P, Wu Z, et al. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013; 435: 85-90. doi: 10.1016/j.colsurfa.2012.12.056

85. Tolmacheva VV, Apyari VV, Kochuk EV, et al. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. Journal of Analytical Chemistry. 2016; 71(4): 321-338. doi: 10.1134/s1061934816040079

86. Khojasteh H, Salavati-Niasari M, Safajou H, et al. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diamond and Related Materials. 2017; 79: 133-144. doi: 10.1016/j.diamond.2017.09.011

87. Liu J, Du C, Huang W, et al. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomaterials Science. 2024; 12(1): 8-56. doi: 10.1039/d3bm01352a

88. Mahmoodi NM, Bashiri M, Moeen SJ. Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation. Materials Research Bulletin. 2012; 47(12): 4403-4408. doi: 10.1016/j.materresbull.2012.09.036

89. Ganjali F, Kashtiaray A, Zarei-Shokat S, et al. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. Nanoscale Advances. 2022; 4(5): 1263-1307. doi: 10.1039/d1na00818h

90. Wadhawan S, Jain A, Nayyar J, et al. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. Journal of Water Process Engineering. 2020; 33: 101038. doi: 10.1016/j.jwpe.2019.101038




DOI: https://doi.org/10.24294/can7509

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 G. M. Shweta, Lalsingh Naik, Sushant Kakati, Rangappa Pujar, Shridhar Mathad, Deepak Shirgaonkar

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.