References
Kroto HW, Heath JR, O’Brien SC, et al. C60: Buckmisterfullerene. Nature 1985; 318(6042): 162163. doi: 10.1038/318162a0.
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 5658. doi: 10.1038/354056a0.
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363(6430): 603605. doi: 10.1038/363603a0.
Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 1992; 359(6397): 707709. doi: 10.1038/359707a0.
Campos-Delgado J, Romo-Herrera J, Jia X, et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nanoletters 2008; 8(9): 27732778. doi: 10.1021/nl801316d.
Georgakilas V, Perman JA, Tucek J, et al. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews 2015; 115(11): 47444822. doi: 10.1021/cr500304f.
Serp P, Feurer R, Kalck P, et al. A chemical vapor deposition process for the production of carbon nanospheres. Carbon 2001; 39(4): 615628. doi: 10.1016/S0008-6223(00)00324-9.
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666669. doi: 10.1126/science.1102896.
The Nobel Prize. The Nobel Prize in Physics 2010. 2010. Available from: https://www.nobelprize.org/prizes/physics/2010/summary/
Avouris P, Dimitrakopoulos C. Graphene: Synthesis and Applications. Materials Today 2012; 15(3): 86–97. doi: 10.1016/S1369-7021(12)70044-5.
Dong Y, Guo S, Mao H, et al. In situ growth of CVD graphene directly on dielectric surface toward application. ACS Applied Electronic Materials 2020; 2(1): 238–246. doi: 10.1021/acsaelm.9b00719.
Frederick N. Cn fullerenes. 2019. Available from: https://nanotube.msu.edu/fullerene/fullerene-isomers.html.
Hashmi MA, Lein M. Carbon nano-onions as photosensitizers: Stacking-induced red-shift. The Journal of Physical Chemistry C 2018; 122(4): 2422–2431. doi: 10.1021/acs.jpcc.7b11421.
Manini N. 3D structures. 2020. Available from: http://materia.fisica.unimi.it/manini/dida/structures.html.
Veiga RGA, Tomanek D, Frederick N. Tube ASP: Carbon nanotube generation applet [Internet]. Michigan State University. 2020. Available from: https://nanotube.msu.edu/tubeASP/.
VESTA. Momma K, Izumi F. (Version 3.5.5) [Computer application]. 2006–2020. Available from: https://jpminerals.org/vesta/en/download.html.
Teo K, Singh C, Chhowalla M, et al. Catalytic synthesis of carbon nanotubes and nanofibers. In: Nalwa H (editor). Encyclopedia of nanoscience and nanotechnology. California: American Scientific Publishers; 2003. p. 665–686. Available from: http://nanotubes.rutgers.edu/PDFs/Catalytic%20Synthesis%20of%20Carbon%20Nanotubes%20and%20Nanofibers.pdf.
Choi K, Rhee S. Effect of carrier gas on chemical vapor deposition of copper with (Hexafluoroacetylacetonate)Cu (I)(3,3-Dimethyl 1 butene). Journal of the Electrochemical Society 2001; 148(7): C473–C478. doi: 10.1149/1.1375168.
Ruan G, Sun Z, Peng Z, et al. Growth of graphene from food, insects and waste. ACS Nano 2011; 5(9): 7601–7607. doi: 10.1021/nn202625c.
Al-Sarraf A, Khodair Z, Manssor M, et al. Preparation and characterization of ZnO nanotripods and nanoflowers by atmospheric pressure chemical vapor deposition (APCVD) technique. AIP Conference Proceedings 2018; 1968(1): 030005. doi: 10.1063/1.5039192.
Noor N, Chew C, Bhachu C, et al. Influencing FTO thin film growth with thin seeding layers: A route to microstructural modification. Journal of Materials Chemistry C 2015; 3(36): 9359–9368. doi: 10.1039/C5TC02144H.
Alarcón-Salazar J, López-Estopier R, Quiroga-González E, et al. Silicon-rich oxide obtained by low-pressure chemical vapor deposition to develop silicon light sources. In: Neralla S (editor). Chemical vapor deposition—Recent advances and applications in optical, solar cells and solid-state devices. InTechOpen; 2016. p. 159–181. doi: 10.5772/63012.
Nozaki T, Ohnishi K, Okazaki K, et al. Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 2007; 45(2): 364–374. doi: 10.1016/j.carbon.2006.09.009.
Barankin MD, Gonzalez E, Ladwig AM, et al. Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells 2007; 91(10): 924–930. doi: 10.1016/j.solmat.2007.02.009.
Hussain A, Liao Y, Zhang Q, et al. Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale 2018; 10(20): 9752–9759. doi: 10.1039/c8nr00716k.
Kumar M, Ando Y. Carbon nanotube synthesis and growth mechanism. Nanotechnology Perceptions 2011; 6(1): 147–170. doi: 10.4024/N02KU10A.ntp.06.01.
Pottathara YB, Grohens Y, Kokol V, et al. Synthesis and processing of emerging two-dimensional nanomaterials. In: Pottathara Y, Thomas S, Kalarikkal N, et al. (editors). Nanomaterials synthesis. New York: Elsevier; 2019. p. 1–25. doi: 10.1016/B978-0-12-815751-0.00001-8.
Benelmekki M, Erbe A. Nanostructured thin films—Background, preparation and relation to the technological revolution of the 21st century. In: Benelmekki M, Erbe A (editors). Frontiers of nanoscience. New York: Elsevier; 2019. p. 1–34. doi: 10.1016/B978-0-08-102572-7.00001-5.
Mattox DM. Plasmas and plasma enhanced CVD. In: Mattox DM (editors). The foundations of vacuum coating technology. New York: Elsevier; 2018. p. 61–86. doi: 10.1016/b978-0-12-813084-1.00003-0.
Sengupta J. Carbon nanotube fabrication at industrial scale. In: Hussain CM (editor). Handbook of nanomaterials for industrial applications. New York: Elsevier; 2018. p. 172–194. doi: 10.1016/b978-0-12-813351-4.00010-9.
Scott LT, Boorum MH, McMahon BJ, et al. A rational chemical synthesis of C60. Science 2002; 295(5559): 1500–1503. doi: 10.1126/science.1068427.
Takehara H, Fujiwara M, Arikawa M, et al. Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 2005; 43(2): 311–319. doi: 10.1016/j.carbon.2004.09.017.
Liu Y, Vander Wal RL, Khabashesku VN. Functionalization of carbon nano-onions by direct fluorination. Chemistry of Materials 2007; 19(4): 778–786. doi: 10.1021/cm062177j.
Kleckley S, Wang H, Oladeji I, et al. Fullerenes and polymers produced by the chemical vapor deposition method. ACS Symposium Series 1998; 681(1): 51–60. doi: 10.1021/bk-1998-0681.ch006.
Gao Y, Zhou Y, Qian M, et al. Chemical activations of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 2012; 51(1): 52–58. doi: 10.1016/j.carbon.2012.08.009.
Santiago D, Rodríguez GG, Palkar A, et al. Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 2012; 28(49): 17202–17210. doi: 10.1021/la3031396.
Zhang W, Fu J, Chang J, et al. Fabrication and purification of carbon nano onions. Carbon 2015; 82(1): 610. doi: 10.1016/j.carbon.2014.10.056.
Zhang C, Li J, Shi C, et al. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst. Carbon 2011; 49(4): 1151–1158. doi: 10.1016/j.carbon.2010.11.030.
Chen X, Deng F, Wang J, et al. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters 2001; 336(3–4): 201–204. doi: 10.1016/S0009-2614(01)00085-9.
Dresselhaus MS, Dresselhaus G, Eklund PC, et al. Carbon nanotubes. In: Andreoni W (editor). The physics of fullerene-based and fullerene-related materials. Dordrecht: Springer; 2000. p. 331–379. doi: 10.1007/978-94-011-4038-6_9.
McKee GS, Deck CP, Vecchio KS. Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis. Carbon 2009; 47(8): 2085–2094. doi: 10.1016/j.carbon.2009.03.060.
Yuan D. Property control of single walled carbon nanotubes and their devices [PhD thesis]. Durham (NC): Duke University; 2008.
Jacobberger RM, Machhi R, Wroblewski J, et al. Simple graphene synthesis via chemical vapor deposition. Journal of Chemical Education 2015; 92(11): 1903–1907. doi: 10.1021/acs.jchemed.5b00126.
Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature 2012; 490(7419): 192–200. doi: 10.1038/nature11458.
Mouras S, Hamwi A, Djurado D, et al. New synthesis of first stage graphite intercalation compounds with fluorides. Journal of Fluorine Chemistry 1987; 35(1): 151. doi: 10.1016/0022-1139(87)95120-7.
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon 2010; 48(8): 2127–2150. doi: 10.1016/j.carbon.2010.01.058.
O’Brien P, Pickett NL, Otway DJ. Developments in CVD delivery systems: A chemist’s perspective on the chemical and physical interactions between precursors. Chemical Vapor Deposition 2002; 8(6): 237–249. doi: 10.1002/1521-3862(20021203)8:6<237::AID-CVDE237>3.0.CO;2-O.
Ionescu MI, Zhang Y, Li R, et al. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Applied Surface Science 2011; 257(15): 6843–6849. doi: 10.1016/j.apsusc.2011.03.011.
Hawkins MR, Robinson M (inventors). Epsilon Technology, Inc. (assignee). Gas injectors for reaction chambers in CVD systems. US patent. 5,221,556. 1993 Jun 22.
Vahlas C, Caussat B, Senocq F, et al. A delivery system for precursor vapors based on sublimation in a fluidized bed. Chemical Vapor Deposition 2007; 13(2–3): 123–129. doi: 10.1002/1521-3862(20021203)8:6<237::AID-CVDE237>3.0.CO;2-O.
Maury F, Duminica FD, Senocq F. Optimization of the vaporization of liquid and solid CVD precursors: Experimental and modeling approaches. Chemical Vapor Deposition 2007; 13(11): 638–643. doi: 10.1002/cvde.200706600.
Díaz-Chacóna LC, Arévalo-Festerb JE, Plaza-Pirelab EV, et al. Characterization by scanning electron microscopy of carbon micro and nanospheres obtained from naphthalene using the chemical vapor deposition technique (in Spanish). Acta Microscópica 2011; 20(1): 54–59. Available from: https://www.acta-microscopica.org/acta/article/view/419/364.
Li M, Wang C, O’Connell MJ, et al. Carbon nanosphere adsorbents for removal of arsenate and selenate from water. Environmental Science: Nano 2015; 2(3): 245–250. doi: 10.1039/c4en00204k.
Nieto-Márquez A, Romero R, Romero A, et al. Carbon nanospheres: Synthesis, physicochemical properties and applications. Journal of Materials Chemistry 2011; 21(6): 1664–1672. doi: 10.1039/c0jm01350a.
Ruan S, Zhu B, Zhang H, et al. A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging. Journal of Colloid and Interface Science 2014; 422(1): 25–29. doi: 10.1016/j.jcis.2014.02.006.
Wang J, Hu Z, Xu J, et al. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Materials 2014; 6(2): 1–11. doi: 10.1038/am.2013.79.
Campos-Delgado J, Farhat H, Kim YA, et al. Resonant Raman study on bulk and isolated graphitic nanoribbons. Small 2009; 5(23): 2698–2702. doi: 10.1002/smll.200901059.
Muangrat W, Wongwiriyapan W, Morimoto S, et al. Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Scientific Reports 2019; 9(1): 1–9. doi: 10.1038/s41598-019-44315-y.
Chuang AT, Boskovic BO, Robertson J. Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapor deposition. Diamond and Related Materials 2006; 15(4–8): 1103–1106. doi: 10.1016/j.diamond.2005.11.004.
Hiraki H, Jiang N, Wang H, et al. Electron emission from nano-structured carbon composite materials—An important role of the interface for enhancing the emission. Journal De Physique IV (Proceedings) 2006; 132(1): 111–115. doi: 10.1051/jp4:2006132022.
Fan L, Zhu M, Lee X, et al. Direct synthesis of graphene quantum dots by chemical vapor deposition. Particle and Particle Systems Characterization 2013; 30(9): 764–769. doi: 10.1002/ppsc.201300125.
Zhang ZP, Zhang J, Chen N, et al. Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science 2012; 8(1): 31–54. doi: 10.1039/c4ee02594f.
Copyright (c) 2022 Ali Roberto Ruiz Hernández, Adrián Gutiérrez Cruz, Daniela Luna, José Fernando Vega, Gerardo Patiño Guillén, Alan Arceta Lozano, Jessica Campos-Delgado