Role of targeting nanoparticles for cancer immunotherapy and imaging

Ru Wen, Afoma C Umeano

Article ID: 95
Vol 3, Issue 2, 2019

VIEWS - 1444 (Abstract) 811 (PDF)

Abstract


Cancer immunotherapy involves the delivery of immunogenic compounds and/or the priming, or induction, of the body's natural immune system to target cancer. The use of cancer immunotherapy has led to various means of cancer prevention and treatment that have produced prolonged life expectancy and stabilized disease. Nanoparticles are promising vehicles or adjuvants for effective delivery of therapeutics, antigens, stimulatory effectors, or antibodies for therapeutic invention. Targeting nanoparticles are especially useful due to their capability of accumulating in specific sites of interest like tumors and, thereby, decreasing risks of damage to normal tissue. Targeting can be achieved by incorporation of cell-surface related binding molecules or antibodies. This review explores the role of targeting nanoparticles as delivery or adjuvant sys­tems to modulate immune response, and as imaging tracking systems for cancer immunotherapy.

Keywords


nanoparticles; cancer immunotherapy; imaging; targeting

Full Text:

PDF


References


1. Schuster M, Nechansky A, Kircheis R. Cancer immunotherapy. Biotechnol J 2006; 1(2): 138–147. doi: 10.1002/biot.200500044.

2. Couzin-Frankel J. Cancer immunotherapy. Science 2013; 342(6165): 1432–1433. doi: 10.1126/science.342.6165.1432.

3. Stokley S, Jeyarajah J, Yankey D, et al. Human papillomavirus vaccination coverage among adolescents, 2007–2013, and postlicensure vaccine safety monitoring, 2006–2014 – United States. MMWR Morb Mortal Wkly Rep 2014; 63(29): 620–624.

4. Liang X, Bi S, Yang W, et al. Reprint of: Epidemiological serosurvey of Hepatitis B in China—Declining HBV prevalence due to Hepatitis B vaccination. Vaccine 2013; 31(Supplement 9): J21–J28. doi: 10.1016/j.vaccine.2013.08.012.

5. Williams WW, Lu P-J, O'Halloran A, et al. Vaccination coverage among adults, excluding influenza vaccination – United States, 2013. MMWR Morb Mortal Wkly Rep 2015; 64(4): 95–102.

6. Crittenden M, Kohrt H, Levy R, et al. Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol 2015; 25(1): 54–64. doi: 10.1016/j.semradonc.2014.07.003.

7. Schwendener RA. Liposomes as vaccine delivery systems: A review of the recent advances. Ther Adv Vaccines 2014; 2(6): 159–182. doi: 10.1177/2051013614541440.

8. Chen H, Ruckenstein E. Micellar structures in nanoparticle-multiblock copolymer complexes. Langmuir 2014; 30(13): 3723–3728. doi: 10.1021/la500450b.

9. Chen H, Ruckenstein E. Formation and degradation of multicomponent multicore micelles: Insights from dissipative particle dynamics simulations. Langmuir 2013; 29(18): 5428–5434. doi: 10.1021/la400033s.

10. Fan Y, Sahdev P, Ochyl LJ, et al. Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release 2015; 208: 121–129. doi: 10.1016/j.jconrel.2015.04.010.

11. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. ‎Nat Rev Cancer 2012; 12(4): 237–251. doi: 10.1038/nrc3237.

12. Pichler WJ, Wyss-Coray T. T cells as antigen-presenting cells. Immunol Today 1994; 15(7): 312–315. doi: 10.1016/0167-5699(94)90078-7.

13. Cruse JM, Lewis RE, Wang H. Antigen presentation. In: Immunology guidebook. San Diego: Academic Press; 2004. p. 267–276.

14. Flaherty DK. Antigen-presenting cells. In: Immunology for pharmacy. Saint Louis: Mosby; 2012. p. 37–44. doi: 10.1016/B978-0-323-06947-2.10005-7.

15. Sprent J. Antigen-presenting cells: Professionals and amateurs. Curr Biol 1995; 5(10): 1095–1097. doi: 10.1016/S0960-9822(95)00219-3.

16. Figdor CG, de Vries IJM, Lesterhuis WJ, et al. Dendritic cell immunotherapy: Mapping the way. Nat Med 2004; 10(5): 475–480. doi: 10.1038/nm1039.

17. Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008; 38(5): 1404–1413. doi: 10.1002/eji.200737984.

18. Reddy ST, Rehor A, Schmoekel HG, et al. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 2006; 112(1): 26–34. doi: 10.1016/j.jconrel.2006.01.006.

19. Uto T, Wang X, Sato K, et al. Targeting of antigen to dendritic cells with poly(γ-glutamic acid) nanoparticles induces antigen-specific humoral and cellular immunity. J Immunol 2007; 178(5): 2979–2986. doi: 10.4049/jimmunol.178.5.2979.

20. Cruz LJ, Tacken PJ, Fokkink R, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 2010; 144(2): 118–126. doi: 10.1016/j.jconrel.2010.02.013.

21. Bandyopadhyay A, Fine RL, Demento S, et al. The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials 2011; 32(11): 3094–3105. doi: 10.1016/j.biomaterials.2010.12.054.

22. Rosalia RA, Cruz LJ, van Duikeren S, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 2015; 40: 88–97. doi: 10.1016/j.biomaterials.2014.10.053.

23. Cruz LJ, Rosalia RA, Kleinovink JW, et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response: A comparative study. J Control Release 2014; 192: 209–218. doi: 10.1016/j.jconrel.2014.07.040.

24. Carrillo-Conde B, Song E-H, Chavez-Santoscoy A, et al. Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol Pharm 2011; 8(5): 1877–1886. doi: 10.1021/mp200213r.

25. Ghotbi Z, Haddadi A, Hamdy S, et al. Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J Drug Target 2011; 19(4): 281–292. doi: 10.3109/1061186X.2010.499463.

26. Cruz LJ, Rueda F, Cordobilla B, et al. Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm 2010; 8(1): 104–116. doi: 10.1021/mp100178k.

27. Moffatt S, Cristiano RJ. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. Int J Pharm 2006; 321(1): 143–154. doi: 10.1016/j.ijpharm.2006.05.007.

28. Li WA, Mooney DJ. Materials based tumor immunotherapy vaccines. Curr Opin Immunol 2013; 25(2): 238–245. doi: 10.1016/j.coi.2012.12.008.

29. Hu Y, Litwin T, Nagaraja AR, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett 2007; 7(10): 3056–3064. doi: 10.1021/nl071542i.

30. Kwon YJ, Standley SM, Goh SL, et al. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J Control Release 2005; 105(3): 199–212. doi: 10.1016/j.jconrel.2005.02.027.

31. Sneh-Edri H, Likhtenshtein D, Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm 2011; 8(4): 1266–1275. doi: 10.1021/mp200198c.

32. Coester C, Nayyar P, Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm 2006; 62(3): 306–314. doi: 10.1016/j.ejpb.2005.09.009.

33. Zwiorek K, Bourquin C, Battiany J, et al. Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. Pharm Res 2008; 25(3): 551–562. doi: 10.1007/s11095-007-9410-5.

34. Akita H, Kogure K, Moriguchi R, et al. Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation. J Control Release 2010; 143(3): 311–317. doi: 10.1016/j.jconrel.2010.01.012.

35. Taylor PR, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23: 901–944. doi: 10.1146/annurev.immunol.23.021704.115816.

36. Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages: Role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Control Release 2002; 79(1): 29–40. doi: 10.1016/S0168-3659(01)00549-1.

37. Chavez-Santoscoy AV, Roychoudhury R, Pohl NL, et al. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials 2012; 33(18): 4762–4772. doi: 10.1016/j.biomaterials.2012.03.027.

38. Betageri G, Black C, Szebeni J, et al. Fc-receptor-mediated targeting of antibody-bearing liposomes containing dideoxycytidine triphosphate to human monocyte/macrophages. J Pharm Pharmacol 1993; 45(1): 48–53. doi: 10.1111/j.2042-7158.1993.tb03678.x.

39. Neutra MR, Frey A, Kraehenbuhl J-P. Epithelial M cells: Gateways for mucosal infection and immunization. Cell 1996; 86(3): 345–348. doi: 10.1016/S0092-8674(00)80106-3.

40. Fievez V, Plapied L, des Rieux A, et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm 2009; 73(1): 16–24. doi: 10.1016/j.ejpb.2009.04.009.

41. Rajapaksa TE, Stover-Hamer M, Fernandez X, et al. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. J Control Release 2010; 142(2): 196–205. doi: 10.1016/j.jconrel.2009.10.033.

42. Perez P, Hoffman RW, Shaw S, et al. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 1985; 316(6026): 354–356. doi: 10.1038/316354a0.

43. O'day SJ, Hamid O, Urba WJ. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4). Cancer 2007; 110(12): 2614–2627. doi: 10.1002/cncr.23086.

44. Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999; 190(3): 355–366. doi: 10.1084/jem.190.3.355.

45. Duraiswamy J, Kaluza KM, Freeman GJ, et al. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 2013; 73(12): 3591–3603. doi: 10.1158/0008-5472.CAN-12-4100.

46. Hamdy S, Molavi O, Ma Z, et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008; 26(39): 5046–5057. doi: 10.1016/j.vaccine.2008.07.035.

47. Cui Z, Patel J, Tuzova M, et al. Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 2004; 22(20): 2631–2640. doi: 10.1016/j.vaccine.2003.12.013.

48. Yu X, Feizpour A, Ramirez N-GP, et al. Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells. Nat Commun 2014; 5: 4136. doi: 10.1038/ncomms5136.

49. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003; 7(5): 626–634. doi: 10.1016/j.cbpa.2003.08.007.

50. Medintz IL, Uyeda HT, Goldman ER, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435. doi: 10.1038/nmat1390.

51. Yang S-T, Cao L, Luo PG, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc 2009; 131(32): 11308–11309. doi: 10.1021/ja904843x.

52. Wang F, Banerjee D, Liu Y, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010; 135(8): 1839–1854. doi: 10.1039/C0AN00144A.

53. Xiang J, Xu L, Gong H, et al. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano 2015; 9(6): 6401–6411. doi: 10.1021/acsnano.5b02014.

54. Idris NM, Gnanasammandhan MK, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 2012; 18(10): 1580–1585. doi: 10.1038/nm.2933.

55. Xu J, Xu L, Wang C, et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 2017; 11(5): 4463–4474. doi: 10.1021/acsnano.7b00715.

56. Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 2013; 13(10). doi: 10.1038/nri3531.

57. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater 2009; 21(21): 2133–2148. doi: 10.1002/adma.200802366.

58. Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 2006; 35(6): 512–523. doi: 10.1039/b510982p.

59. Cho N-H, Cheong T-C, Min JH, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 2011; 6(10): 675–682. doi: 10.1038/nnano.2011.149.

60. Srinivas M, Tel J, Schreibelt G, et al. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by 19F MRI. Nanomedicine 2015; 10(15): 2339–2348. doi: 10.2217/NNM.15.76.

61. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev 2012; 113(3): 1641–1666. doi: 10.1021/cr200358s.

62. Toy R, Bauer L, Hoimes C, et al. Targeted nanotechnology for cancer imaging. Adv Drug Deliver Rev 2014; 76: 79–97. doi: 10.1016/j.addr.2014.08.002.

63. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media Mol 2014; 9(1): 37–52. doi: 10.1002/cmmi.1551.

64. Meir R, Shamalov K, Betzer O, et al. Nanomedicine for cancer immunotherapy: Tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015; 9(6): 6363–6372. doi: 10.1021/acsnano.5b01939.

65. Kim E-J, Bhuniya S, Lee H, et al. In vivo tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced MRI and near-infrared fluorescence. ‎ACS Appl Mater Inter 2016; 8(16): 10266–10273. doi: 10.1021/acsami.6b03344.

66. Pittet MJ, Swirski FK, Reynolds F, et al. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 2006; 1(1): 73–79. doi: 10.1038/nprot.2006.11.

67. Chou S-W, Shau Y-H, Wu P-C, et al. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 2010; 132(38): 13270–13278. doi: 10.1021/ja1035013.

68. Lee SB, Ahn SB, Lee S-W, et al. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater 2016; 8(6): e281. doi: 10.1038/am.2016.80.

69. Lee SB, Lee S-W, Jeong SY, et al. Engineering of radioiodine-labeled gold core-shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS Appl Mater Inter 2017; 9(10): 8480–8489. doi: 10.1021/acsami.6b14800.




DOI: https://doi.org/10.24294/ti.v3.i2.95

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Ru Wen, Afoma C Umeano

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.