Dynamic relationships among tumor, immune response, and microbiota
Vol 3, Issue 1, 2019
VIEWS - 1179 (Abstract) 758 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313–323. doi: 10.1038/nri2515.
2. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124(4): 837–848. doi: 10.1016/j.cell.2006.02.017.
3. Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol 2011; 23(6): 761–768. doi: 10.1016/j.coi.2011.11.002.
4. Matamoros S, Gras-Leguen C, Le Vacon F, et al. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 2013; 21(4): 167–173. doi: 10.1016/j.tim.2012.12.001.
5. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 2016; 10(1): 18–26. doi: 10.1038/mi.2016.75.
6. Lederberg J. Infectious history. Science 2000; 288(5464): 287–293. doi: 10.1126/science.288.5464.287.
7. Mackowiak PA. The normal microbial flora. N Engl J Med 1982; 307(2): 83–93. doi: 10.1056/NEJM198207083070203.
8. Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology 2017; 18: 2. doi: 10.1186/s12865-016-0187-3.
9. Blaser MJ. The microbiome revolution. Clin Invest 2014; 124(10): 4162–4165. doi: 10.1172/JCI78366.
10. Blacher E, Levy M, Tatirovsky E, et al. Microbiome-modulated metabolites at the interface of host immunity. J Immunol 2017; 198(2): 572–580. doi: 10.4049/jimmunol.1601247.
11. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22(10): 1079–1089. doi: 10.1038/nm.4185.
12. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 2014; 146(6): 1489–1499. doi: 10.1053/j.gastro.2014.02.009.
13. Eck A, de Groot EFJ, de Meij TGJ, et al. Robust microbiota-based diagnostics for inflammatory bowel disease. J Clin Microbiol 2017; 55(6): 1720–1732. doi: 10.1128/JCM.00162-17.
14. Nagao-Kitamoto H, Kamada N. Host-microbial cross-talk in inflammatory bowel disease. Immune Netw 2017; 17(1): 1–12. doi: 10.4110/in.2017.17.1.1.
15. Reinisch W. Fecal microbiota transplantation in inflammatory bowel disease. Dig Dis 2017; 35(1–2): 123–126. doi: 10.1159/000449092.
16. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011; 5(1): 82–91. doi: 10.1038/ismej.2010.92.
17. Wang F, Zhang C, Zeng Q. Gut microbiota and immunopathogenesis of diabetes mellitus type 1 and 2. Front Biosci (Landmark Ed) 2016; 21: 900–906. doi: 10.2741/4427.
18. Barlow GM, Yu A, Mathur R. Role of the gut microbiome in obesity and diabetes mellitus. Nutr Clin Pract 2015; 30(6): 787–797. doi: 10.1177/0884533615609896.
19. Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, et al. Gut, bugs, and brain: Role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011; 69(2): 240–247. doi: 10.1002/ana.22344.
20. Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. In: Lyte M, Cryan JF (editors). Microbial endocrinology: The microbiota-gut-brain axis in health and disease. New York, NY, USA: Springer; 2014. p. 3–25. doi: 10.1007/978-1-4939-0897-4_1.
21. Blanchard EB, Scharff L, Schwarz SP, et al. The role of anxiety and depression in the irritable bowel syndrome. Behav Res Ther 1990; 28(5): 401–405. doi: 10.1016/0005-7967(90)90159-G.
22. Erny D, de Angelis ALH, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965–977. doi: 10.1038/nn.4030.
23. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nat Rev Neurosci 2014; 15(5): 300–312. doi: 10.1038/nrn3722.
24. Schafer DP, Stevens B. Phagocytic glial cells: Sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 2013; 23(6): 1034–1040. doi: 10.1016/j.conb.2013.09.012.
25. Halken S, Høst A, Hansen LG, et al. Effect of an allergy prevention programme on incidence of atopic symptoms in infancy. A prospective study of 159 “high-risk” infants. Allergy 1992; 47(5): 545–553. doi: 10.1111/j.1398-9995.1992.tb00680.x.
26. Rottem M, Szyper-Kravitz M, Shoenfeld Y. Atopy and asthma in migrants. Int Arch Allergy Immunol 2005; 136(2): 198–204. doi: 10.1159/000083894.
27. van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol 2011; 128(5): 948–955.e3. doi: 10.1016/j.jaci.2011.07.027.
28. Droste JH, Wieringa MH, Weyler JJ, et al. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin Exp Allergy 2000; 30(11): 1547–1553. doi: 10.1046/j.1365-2222.2000.00939.x.
29. Hong SW, Kim KS, Surh CD. Beyond hygiene: Commensal microbiota and allergic diseases. Immune Netw 2017; 17(1): 48¬–59. doi: 10.4110/in.2017.17.1.48.
30. Lyte M. The role of microbial endocrinology in infectious disease. J Endocrinol 1993; 137(3): 343–345. doi: 10.1677/joe.0.1370343.
31. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079–1084. doi: 10.1126/science.aad1329.
32. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350(6264): 1084–1089. doi: 10.1126/science.aac4255.
33. Gopalakrishnan V, Spencer C, Reuben A, et al. Response to anti-PD-1 based therapy in metastatic melanoma patients is associated with the diversity and composition of the gut microbiome. Proceedings: AACR Annual Meeting 2017; 77(13 Supp): 2672. doi: 10.1158/1538-7445.AM2017-2672.
34. Nishijima S, Suda W, Oshima K, et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res 2016; 23(2): 125–133. doi: 10.1093/dnares/dsw002.
35. Kim SW, Suda W, Kim S, et al. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing, DNA Res 2013; 20(3): 241–253. doi: 10.1093/dnares/dst006.
36. Yang J, Tan Q, Fu Q, et al. Gastrointestinal microbiome and breast cancer: Correlations, mechanisms and potential clinical implications. Breast Cancer 2017; 24(2): 220–228. doi: 10.1007/s12282-016-0734-z.
37. Luu TH, Michel C, Bard J-M, et al. Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer 2017; 69(2): 267¬–275. doi: 10.1080/01635581.2017.1263750.
38. Urbaniak C, Gloor GB, Brackstone M, et al. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 2016; 82(16): 5039¬–5048. doi: 10.1128/AEM.01235-16.
39. Urbaniak C, Cummins J, Brackstone M, et al. Microbiota of human breast tissue. Appl Environ Microbiol 2014; 80(10): 3007–3014. doi: 10.1128/AEM.00242-14.
40. Mehta RS, Nishihara R, Cao Y, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol 2017; 3(7): 921–927. doi: 10.1001/jamaoncol.2016.6374.
41. Mira-Pascual L, Cabrera-Rubio R, Ocon S, al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 2015; 50(2): 167–179. doi: 10.1007/s00535-014-0963-x.
42. Dos Reis SA, da Conceição LL, Siqueira NP, et al. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res 2017; 37: 1–19. doi: 10.1016/j.nutres.2016.11.009.
43. Nosho K, Sukawa Y, Adachi Y, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016; 22(2): 557–566. doi: 10.3748/wjg.v22.i2.557.
44. Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T Cells in colorectal carcinoma. JAMA Oncol 2015; 1(5): 653–661. doi: 10.1001/jamaoncol.2015.1377.
45. Roy S, Trinchieri G. Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer 2017; 17(5): 271–285. doi: 10.1038/nrc.2017.13.
46. Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14(6): 356–365. doi: 10.1038/nrgastro.2017.20.
47. Dzutsev A, Badger JH, Perez-Chanona E, et al. Microbes and cancer. Annu Rev Immunol 2017; 35: 199–228. doi: 10.1146/annurev-immunol-051116-052133.
48. Contreras AV, Cocom-Chan B, Hernandez-Montes G, et al. Host-microbiome interaction and cancer: Potential application in precision medicine. Front Physiol 2016; 7: 606. doi: 10.3389/fphys.2016.00606.
49. Erdman SE, Poutahidis T. Gut microbiota modulate host immune cells in cancer development and growth. Free Radic Biol Med 2016; 105: 28–34. doi: 10.1016/j.freeradbiomed.2016.11.013.
50. Lee CS, Thomas CM, Ng KE. An overview of the changing landscape of treatment for advanced melanoma. Pharmacotherapy 2017; 37(3): 319–333. doi: 10.1002/phar.1895.
51. Hoos A. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 2016; 15(4): 235–247. doi: 10.1038/nrd.2015.35.
52. Buchbinder E, Hodi FS. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest 2015; 125(9): 3377–3383. doi; 10.1172/JCI80012.
53. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 2015; 33(17): 1889–1894. doi: 10.1200/JCO.2014.56.2736.
54. Eroglua Z, Kim DW, Wang X, et al. Long term survival with CTLA-4 blockade using tremelimumab. Eur J Cancer 2015; 51(17): 2689–2697. doi: 10.1016/j.ejca.2015.08.012.
55. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999; 17(7): 2105–2116. doi: 10.1200/JCO.1999.17.7.2105.
56. Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer 2017; 8(3): 410–416. doi: 10.7150/jca.17144.
57. Bersanelli M, Buti S. From targeting the tumor to targeting the immune system: Transversal challenges in oncology with the inhibition of the PD-1/PD-L1 axis. World J Clin Oncol 2017; 8(1): 37–53. doi: 10.5306/wjco.v8.i1.37.
58. Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: Current status and future directions. Cancer Immunol Immunother 2017; 66(5): 551–564. doi: 10.1007/s00262-017-1954-6.
59. Dempke WCM, Fenchel K, Uciechowski P, et al. Second- and third-generation drugs for immuno-oncology treatment—The more the better? Eur J Cancer 2017; 74: 55–72. doi: 10.1016/j.ejca.2017.01.001.
60. Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11(11): 3887–3895.
61. Smithy JW, Moore LM, Pelekanou V, et al. Nuclear IRF-1 expression as a mechanism to assess “Capability” to express PD-L1 and response to PD-1 therapy in metastatic melanoma. J Immunother Cancer 2017; 5: 25. doi: 10.1186/s40425-017-0229-2.
62. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016; 387(10027): 1540–1550. doi: 10.1016/S0140-6736(15)01281-7.
63. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 2016; 375(19): 1823–1833. doi: 10.1056/NEJMoa1606774.
64. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568–571. doi: 10.1038/nature13954.
65. Spranger S, Sivan A, Corrales L, et al. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol 2016; 130: 75–93. doi: 10.1016/bs.ai.2015.12.003.
66. Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014; 124(7): 1174–1182. doi: 10.1182/blood-2014-02-554725.
67. Tauchi Y, Tanaka H, Kumamoto K, et al. Tumor-associated macrophages induce capillary morphogenesis of lymphatic endothelial cells derived from human gastric cancer. Cancer Sci 2016; 107(8): 1101–1109. doi: 10.1111/cas.12977.
68. Okita Y, Tanaka H, Ohira M, et al. Role of tumor-infiltrating CD11b+ antigen-presenting cells in the progression of gastric cancer. J Surg Res 2014; 186(1): 192–200. doi: 10.1016/j.jss.2013.08.024.
69. Yoshii M, Tanaka H, Ohira M, et al. Expression of Forkhead box P3 in tumour cells causes immunoregulatory function of signet ring cell carcinoma of the stomach. Br J Cancer 2012; 106(10): 1668–1674. doi: 10.1038/bjc.2012.141.
70. Yoshii M, Tanaka H, Ohira M, et al. Association of MHC class I expression and lymph node metastasis of gastric carcinoma. Hepatogastroenterology 2013; 60(123): 611–615. doi: 10.5754/hge12433.
71. Tamura T, Ohira M, Tanaka H, et al. Programmed death-1 ligand-1 (PDL1) expression is associated with the prognosis of patients with stage II/III gastric cancer. Anticancer Res 2015; 35(10): 5369–5376.
DOI: https://doi.org/10.24294/ti.v3.i1.79
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Takuya Tsunoda
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.